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This paper discusses an approach to incorporate Artificial Neural Network (ANN) based
kinetics modeling into Large-Eddy Simulation (LES) of reactive flows. The emphasis has
been spent for replacing stiff ordinary differential equation (ODE) solvers with ANN for
chemical kinetics calculations. A back-propagation type of an ANN code has been de-
veloped and its performance has been tested in laminar and turbulent methane/air and
syngas/air premixed combustion processes. The ANN is trained using an independent
premixed flame calculation and then used as is in the LES. Results indicate that the ac-
curacy of ANN predictions for turbulent flow computations highly depend on the initial
training data-set. If well trained, ANN can succesfully predict the chemical state-space
using less memory than a conventional look-up table approach and in a computationally
efficient manner than the stiff ODE solvers.

I. Introduction

Accurate prediction of the scalar and the vectoral fields inside the combustion chamber of a gas turbine
engine is a challenging task and requires the solution of a three dimensional, highly unsteady, turbulent reac-
tive flow problem. Direct Numerical Simulation (DNS) of the high Reynolds number flows is not affordable
yet, since the grid resolution dictated by the solution methodology far more exceeds the current computer
capabilities.1 Therefore, there is a need for simulation models that would decrease the computational cost
without significant reduction in accuracy.

In the realm of reactive flow computations, great effort has been spent to capture the time dependent
processes by LES computations. In order to capture the changes in the species composition state-space
due to the chemical reactions a stiff non-linear ODE system must be solved. The size of the equation
system is determined by the number of species simulated. Thus, for a detailed reaction mechanism, the
chemical kinetics calculations are very time consuming and their application to the engineering problems
may be restricted similar to DNS due to the need for computational resources. Relatively smaller chemical
kinetics mechanisms obtained by using partial equilibrium and/or steady state assumptions are more widely
used than the more detailed mechanisms. However, the reduction process from the detailed to the reduced
mechanisms have to be handled carefully in order to yield a match between the range of applicability of the
assumptions and the operating conditions of the problem.2

Remedies for speeding-up chemical kinetics calculations exist in the literature, such as Intrinsic Low-
Dimensional Manifolds (ILDM)2 and In-Situ Adaptive Tabulation (ISAT) methodologies.3 ILDM requires
generation of a multi dimensional look-up table prior to starting the flow computations. The number of
resolved states by ILDM should be sufficient enough to include all the possible states that may occur during
the simulation. Since this information is not known apriori, huge tables can be generated, which would
require large memory for table storage.4 ISAT, on the other hand, is no different than direct integration of
the chemical equation system in the early stages of the simulation, since the look-up table is generated as
simulation proceeds.
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Another solution is ANN5 methodology, which is a relatively new technique in the area of chemical kinetics
and its aplicability has not been tested fully yet for turbulent reactive flow applications. ANN is widely used
for function approximation, classification, time series prediction, filtering, data association and optimization,6

and is a computing system made up of a number of simple highly interconnected processing elements (PEs)
-neurons-, which process information by its dynamic state response to external inputs.7 Contrary to the
conventional computer modeling approach, which relies on solving the equations, ANN learns by example
and they provide predictions into new states. By ANN technique, instead of solving complex governing
equations of the system of interest, it is possible to train the PEs using a set of input/output pairs that are
representative of the physical process.

In the literature there exist several promising attempts of using ANN for chemical kinetics calculations.
Choi8 trained an ANN architecture for ignition delay time calculations where they used temperature, pres-
sure, equivalence ratio and exhaust gas re-circulation as input for their predictions. Later, a well mixed
reactor calculation was performed which was coupled with the ANN to obtain the ignition delay time rather
than performing direct integration of the chemical kinetics mechanism. It was reported that a speed-up of
600 was obtained by using ANN as opposed to doing direct integration. The main problem associated with
ANN computations is the generation of train/test data-set which covers the chemical state space of interest.
Several different approaches are introduced in the literature, such as parametrizing the state space with
respect to the mixture fraction,9 or defining the limits of the major representative species of the mixture
and assigning random values to them, which would allow to calculate the minor species as well.10 The first
approach was tested on a plug flow reactor calculation where a speed-up of 2700 was obtained against the
direct integration. The predictions obtained with the latter approach was compared with a tabulated chem-
istry technique. It is reported that the memory requirement for such an ANN computation requires only
24 kbytes as opposed to 19934 kbytes for tabulated chemistry calculations. Finally an integration of ISAT
with ANN was also studied by Chen,11 where ANN was trained based on an already existing ISAT table.
Same approach was later re-visited by Kapoor12 and was applied to a turbulent premixed flame calculation.
Although these were first succesfull attempts of integrating ANN into a turbulent flow computation, the
generation of an ISAT table and training ANN based on that requires performing the simulation twice which
would increase the overall effort spent on the same simulation. Current paper is seeking for a more robust
way of constructing the chemical state space to train the ANN and thus using its unique capability to extract
information from this data.

II. Mathematical Formulation

II.A. LES Modeling

An LES approach has been employed with a subgrid mixing and combustion model for the current calcula-
tions. For this purpose, the fully compressible, unsteady, multi-species Favre-filtered Navier Stokes equations
for continuity, momentum, total energy and species conservation are used as:

∂ρ̄

∂t
+

∂ρ̄ũi

∂xi
= 0

∂ρ̄ũi

∂t
+

∂

∂xj
[ρ̄ũiũj + p̄δij − τ̄ij + τsgs

ij ] = 0

∂ρ̄Ẽ

∂t
+

∂

∂xi
[(ρ̄Ẽ + p̄)ũi + q̄i − ũj τ̄ji + Hsgs

i + σsgs
ij ] = 0

∂ρ̄Ỹk

∂t
+

∂

∂xi
[ρ̄Ỹkũi − ρ̄D̄k

∂Ỹk

∂xj
+ φsgs

i,k + θsgs
i,k ] = ¯̇ωk (1)

Here, ∼ represents Favre averaging operator, and is calculated for a given quantity f̃ as (ρ̄f/ρ̄), where
the overbar stands for spatial filtering using a top-hat filter. The subgrid shear stress (τ sgs

ij ), the subgrid
viscous work (Hsgs

i ), the subgrid diffusive flux (θsgs
jm ) arises due to the filtering operation and they need to

be modeled. Total energy is given as Ẽ = ẽ + 1
2 ũkũk + ksgs, where ẽ is the filtered internal energy, ksgs is

subgrid scale kinetic energy. The filtered pressure is calculated by the filtered equation of state as p̄ = ρ̄RT̃ ,
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where R is the mixture gas constant.
For momentum and energy transport, the major effect of the small scales is to provide dissipation for the

energy cascade. Therefore, an eddy viscosity type subgrid model is suitable for the calculation of subgrid
stresses, τ sgs

ij and enthalpy flux, Hsgs
i . The subgrid scale eddy viscosity is calculated as νt = Cν(ksgs)

1

2 ∆̄,

where ∆̄ is the grid cut-off scale. An additional transport equation for the subgrid scale kinetic energy ksgs

is solved, which is in the form of:

∂ρ̄ksgs

∂t
+

∂

∂xi
(ρ̄ũik

sgs) = P sgs − Dsgs +
∂

∂xi
(
ρ̄νt

Prt

∂ksgs

∂xi
) (2)

where P sgs = −τsgs
ij

∂ũi

∂xj
represents the production term, and Dsgs = Cερ̄

(k̃sgs)
3

2

∆̄
, is the dissipation term.

The subgrid scale terms are closed as τ sgs
ij = −2ρ̄νt(S̃ij −

1
3 S̃kkδij)+

2
3 ρ̄ksgsδij , and Hi

sgs = −ρ̄ νt

Prt

∂H̃
∂xi

. Here,
Prt = 1, and the two coefficients, Cνand Cε have constant value of 0.067 and 0.916, based on an earlier
calibration.13 Also based on earlier studies, the subgrid viscous work, σsgs

ij , is neglected for the current LES.

II.B. Subgrid Combustion Modeling

The subgrid mass flux, φsgs
jm , the subgrid diffusive flux θsgs

jm , and the filtered reaction rate ¯̇ωk all require
closure as well. However, a closure at the resolved scale (as done for momentum and energy transport) is
not appropriate since combustion, heat release, volumetric expansion and small-scale turbulent stirring all
occur at the small scales, which are not resolved in a conventional LES approach. To address this important
physics, in our study a subgrid combustion model based on the Linear Eddy Mixing (LEM)14 model is used
to model combustion occurring within every LES cells (called LEMLES, hereafter). With this approach,
there is no need to provide explicit closure for φsgs

jm , θsgs
jm , and ¯̇ωk since a more accurate and exact closure is

implemented within the subgrid scales. LEMLES methodology and its ability has been reported extensively
elsewhere,15–17 however, for completeness we give a brief overview of the methodology below.

Consider the following exact transport equation for the kth scalar Yk, where there is no LES filtering:

ρ
∂Yk

∂t
= −ρ[ũi + (u′

i)
R + (u′

i)
S ]

∂Yk

∂xi
−

∂

∂xi
(ρYkVi,k) + ω̇k (3)

In the above equation, Vi,k is the k-th species diffusion velocity that is obtained using Fick’s law. To describe
the LEMLES approach, the convective velocity is separated into three parts as: ũi + (u′

i)
R + (u′

i)
S that

represent respectively, the LES resolved velocity field, the LES resolved subgrid fluctuation (obtained from
ksgs), and the unresolved subgrid fluctuation. Using this definition, Eq. (3) can be recast into the following
two-step numerical form:17

Yk
∗ − Yk

n

∆tLES
= −[(ũi + u′

i)
R]

∂Yk
n

∂xi
(4)

Yk
n+1 − Yk

∗ =

∫ t+∆tLES

t

−
1

ρ
[ρ(u′

i)
S ∂Yk

n

∂xi
+

∂

∂xi
(ρYkVi,k)

n
− ω̇n

k ]dt′ (5)

Here, Eqs. (4) and (5) represent large-scale and small-scale processes, respectively, and ∆tLES is the
LES time step. The large-scale step advects the subgrid scalar gradient using a 3D Lagrangian process that
ensures strict mass conservation and preserves the small-scale scalar structure. Within each LES cell the
subgrid scale processes (the integrand in Eq. (5)) represent respectively, the small-scale turbulent stirring,
molecular diffusion and reaction kinetics. The integrand is solved on a 1D line embedded inside each LES
cells with a subgrid resolution that is fine enough to resolve the Kolmogorov scale, η. With such a resolution,
both molecular diffusion and reaction rate are closed in an exact sense and this is one of the major strengths
of the LEMLES strategy. The 1D line is aligned in the flame normal or the maximum scalar gradient
direction and thus, does not represent any physical Cartesian direction. More specifically, the following
reaction-diffusion equation (and an accompanying energy equation) is solved on the 1D LEM line for species
mass fraction:

ρ
∂Yk

m

∂ts
= Fs

m −
∂

∂s
(ρYk

mVs,k
m) + ω̇m

k (6)
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Here ts indicates a local LEM timescale and the superscript m indicates that the subgrid field within each
LES supergrid is resolved by NLEM number of LEM cells (i.e., m = 1, 2, ..NLEM) along the local coordinate
s (which is aligned in the direction of the steepest gradient).

In the above equation, turbulent stirring is represented by Fs
m and is implemented using a stochastic

re-arrangement events that stir the subgrid scalar fields within each LES cell. The location of stirring event
is chosen from a uniform distribution and the frequency of stirring is derived from 3D inertial range scaling
laws derived from Kolmogorov’s hypothesis as:18

λ =
54

5

νRe∆̄

Cλ∆̄3

[( ∆̄
η )

5

3 − 1]

[1 − ( η
∆̄

)
4

3 ]
(7)

where, Cλ = 0.067.19 The eddy size (l) is picked randomly from an eddy size distribution f(l) ranging from

∆̄ to η: f(l) = 5
3

l
−8

3

η
5

3 −∆
5

3

where η = Nη∆̄Re∆̄
−3/4, and Re∆̄ = u′∆/ν is the subgrid Reynolds number.

Volumetric expansion due to heat release is implemented locally within the subgrid by expanding the
LEM domain. Although not required, re-gridding is employed to keep the total number of LEM cells constant
throughout the simulation to reduce programmatic complexity. Re-gridding can introduce some numerical
diffusion that is shown to be negligible in compressible flow simulations using an explicit time step ∆tLES

(which is limited by acoustic time scale).
Once the subgrid evolution has occurred, large-scale advection (Eq. 4) is implemented by a 3D Lagrangian

process that determines the amount of mass to be advected and explictly advecting this amount (and
the accompanying subgrid scalar fields) across the LES cell faces. Further details of this process is given
elsewhere.17 Finally, the LES-filtered species mass fractions Ỹk (used in the LES equations) are obtained by
Favre averaging the subgrid mass fractions, Yk

m:

Ỹk = (1/

NLEM∑
m=1

ρm)

NLEM∑
m=1

(ρYk)m (8)

II.C. Chemical Kinetics and ANN

For a set of elementary reactions containing an arbitrary number of reactants N , and products M , the net
rate at which species Xk is produced and/or consumed, the reaction rate, can be calculated by using the
following formula:

ω̇k =

L∑
i=1

νkiqi (9)

where L is the number of reactions that species Xk is involved. Here, qi is the rate-of-progress variable
and calculated as:

qi = kfi

N∏
k=1

[Xk]νki

′

− kbi

M∏
k=1

[Xk]νki

′′

(10)

and νki = (νki
′′

− νki
′

). The reaction rate calculation through Eq. (9) provides the link between the
chemical kinetics and the subgrid scale evolution of the species that was given in Eq. (6).

The rate coefficients of the forward and backward reactions, kf and kb, are functions of temperature. They
represent the frequency of molecular collision between molecules and probability that a collision will lead to a
chemical reaction. The rate coefficients are expressed in the Arrhenius form as, kf (T ) = BfT nf exp[

−Ea,f

RT ],
where Ea,f is the activation energy for the forward reaction, Bf is the frequency factor, and nf is the
temperature exponential. As a result, the chemical kinetics calculations require the solution of a non-linear,
coupled system of ODEs. The main problem associated with the solution procedure is the stiffness of the
system of equations. Minor species have several order of magnitude different time scales than the major
species which prohibits application of standard ODE solvers.20 Thus, chemical kinetics calculations involves
stiff ODE solvers, such as DVODE, that lead to a time consuming procedure.

4 of 15

American Institute of Aeronautics and Astronautics



From a chemical kinetics point of view the reaction rates are functions of the temperature, pressure and
species mass fractions and the nonlinear system of equations used to determine the reaction rates can be
represented as ∂Yi

∂t = f(T, P, Y1, Y2, ..., YNSPECI). From an ANN point of view, it is possible to map inputs
(T, P, Yi) to the reaction rates without requiring any knowledge for the system of equations and considering
it as a ′′black box′′. The calculations that will be presented within the paper relies on this fact and the
procedure for training the ANN and its application more specifically will be explained in the following
sections.

III. Results and Discussion

III.A. ANN Code Validation

For this particular study a multilayer perceptron type of artificial neural network (MLP-ANN) is used to
replace chemical kinetics calculations. A back-propagation6 algorithm, which is essentially based on the
gradient descent procedure , is used for data training. For a back-propagation type of training procedure
of MLP-ANNs the algorithm basically consists of two parts: (i) forward propagating the input and (ii)
backward propagating the error. Within this context, the output of a single neuron i at an arbitrary layer n

can be calculated as: yi
n = g(neti

n), where neti
n =

M∑
m=0

Wim
nym

n−1, M is the number of neurons connected

to neuron i, g is the activation function, Wim
n is the coefficient of the connection between neurons i and

m at layers n and n-1, and ym
n−1 is the output of the neuron m at layer n-1. Once the output of each

neuron has been found, the calculation of the error associated with each neuron at the output layer is trivial

and given as Ei = 1
2

I∑
i=1

[di
k
− yi

k], where di
k is the desired output and yi

k is the actual output of neuron

i at the output layer k. The gradient descent rule involves adjusting the connection weights according to
the gradient of the local error across each connection as ∆w = −η5E, where η is the learning coefficient.
Considering the fact that the error function at the output layer is differentiable, with a help of little algebra,
the derivative of the local error with respect to the connection coefficient can be obtained for a connection
between output and hidden layer as

dE

dwij
k

= −[di
k
− yi

k]g′(neti
k)yj

k−1 (11)

and for the rest of the connections as

dE

dwij
k−1

= −[

L∑
l=i

δlwli
k]g′(neti

k−1)yj
k−2 (12)

δl is the local error term of PE l. Its value can be calculated as: δl
k = [dl

k
− yl

k]g′(netl
k) for k denoting

the output layer and as: δl
k = g′(netl

k).
Z∑

z=0

Wzl
k+1δz

k+1 for the hidden layer.

In this study a back-propagation type of MLP-ANN code has been written in FORTRAN, which employs
the formulation described above. The ANN implementation of the gradient descent theory is slightly different
than its original version and has (i) batch update and (ii) momentum term options.21 The batch update
relies on updating the coefficients based on cumulative error function, which is basically sum of the local error
of a single PE obtained through certain number of iterations. This allows us to calculate new coefficients
after introducing several input output pairs. Momentum term, on the other hand, is used for accelerating
the convergence of the ANN by adding a portion of the previous value of the connection coefficient to its
new value. The training data is introduced randomly to the net in order to avoid ANN to memorize the
specific pattern, and to generalize on the nature of the process.6 The learning coefficients associated with
each hidden layer are held constant for this study. The implementation of a more generic approach, which
allows calculation of the learning coefficients for each of the individual PEs dynamically by using the Delta-
Bar-Delta22 or Extended-Delta-Bar-Delta21 did not lead into a drastic improvement in the training phase,
and these options will be re-visited later.
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Figure 1. Validation of the ANN code on a simple test function

The validity of the ANN training code is first tested on a simple function. This is an important step which
proves that the ANN code is working fine and can be used as a tool for chemical kinetics calculations. The
function of interest is: f(x, y) = Sin(πx)3.Cos(πy)3. The ANN training is achieved by using two different
training files. First training file is constructed by 100 points, 10 in x and 10 in y, where as the second one
is for 2500 points, with 50 points for each variable. The ANN architecture compromises of 3 hidden layers
with 15, 10 and 4 PEs at each layer. This specific distribution is achieved by experimenting over different
architectures and checking the performance with the maximum root mean square (RMS) error. The trained
nets are used later to predict the function at locations for which it was not trained and the surface that is
calculated with ANN is given in Fig. 1a for the net trained for 2500 points. Here, the general topology seem
to be accurately captured by the ANN without any significant errors. The absolute error surface, as seen in
Fig. 1b exhibits maximum values corresponding to the regions where the function reaches into its peak. For
the rest of the regions, the error seem to be acceptable with a maximum value of 0.42 %. Fig. 1c shows the
variation of the actual data and ANN predictions on a cross section taken in a x constant plane. As it can
be clearly seen in the figure, the net trained for 100 points fails to predict the exact profile especially on the
center region where it should be flat. The other net that is trained for 2500 points, on the other hand, is
very accurate and follows the correct profile in a better way.

III.B. Laminar Premixed Flame Computation

Applicability of the ANN for substituting the chemical kinetics solver is first tested for a simple laminar 1-D
premixed flame computation. A PSI syngas mixture23 is used as the fuel which includes CO2 and H2O as
diluents in a CO-H2 fuel mixture. The main fuel components exhibit distinct reaction pathways. Hence,
combustion simulations for syngas mixtures require relatively large chemical kinetics mechanisms to capture
the correct physics,24 which increases the computational cost. ANN can be used to decrease the cost for
these calculations.

The initial test/train data required for ANN procedure is generated by using PREMIX module of
CHEMKIN for an equivalence ratio of 0.6, and a 14 species, 10 step reduced mechanism is used for rep-
resenting the chemical kinetics. The mechanism is accurate for a wide range of operating conditions of
syngas flames.25 Result obtained from the PREMIX calculation resolved the flame on 256 points. Although
an exact definition for the number of train/test data is not given in the literature, it is advised that for an
MLP-ANN to generalize properly, the number of independent weights need to be fewer by a factor of 10 than
the number of input/output training points.6 Considering the fact that number of PEs used for most of the
previous ANN-chemical kinetics calculations is on the order of 10, 5000 points for the current computation
is appropriate for the training procedure. Thus, the profiles are populated to 5000 equi-distance data points
and among these points randomly 70 % is selected for training and 30 % for testing. Similar to the selection
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Figure 2. Actual test data and ANN predictions
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Figure 3. Application of ANN to a laminar, time dependent syngas-air flame

of exact number of training points, the relative percantage of train and test data is also case dependent, and
the range varies between 60-80 % in the literature.8, 9 The ANN architecture for this particular case consists
of 15 inputs and 3 hidden layers with each having 20, 10 and 8 PEs, respectively. The optimum value for
the architecture is defined by experimenting with different values of PEs at the hidden layers and checking
the performance of the ANN for predicting the test data. The architecture used for this study corresponds
to an RMS error at the outpur layer of 0.56 % at maximum for the OH radical. The errors associated with
other species are less than this value, e.g., the maximum RMS error for H2 is 0.073 %. 14 independent nets
are generated for the reaction rates of each species. Following the information given in the literature,21 in
order to avoid saturation at the output layer, the normalized reaction rate is scaled to vary between ± 0.8 as
opposed to the normalized input, which is between ± 1. The comparison of the ANN predictions and the
actual test data is shown in Fig. 2a and b. In general, reaction rates exhibit two distinct profiles depending
on the species. Major species, such as CO, H2, CO2, H2O for this particular case, are either consumed or
produced at all in the flame region corresponding to a profile as given in Fig. 2a. The minor species, on the
other hand, are consumed and produced in the flame region. A typical example for this kind of behavior is
given in Fig. 2b. It is crucial and must be proved that ANN is able to predict both profiles correctly, which
is the case for this calculation. For this purpose, the performance of the net has been tested on the data
that it was not trained for as shown in Fig. 2a, b with the dashed lines. For both of these species ANN
succesfully captures the correct profile, except for small oscillations in H reaction rate right before it starts
to decrease. This defect is very small and the RMS value averaged for all the input/output pairs at the at
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Figure 4. Actual test data and ANN predictions for ANN-MER approach applied to a methane-air flame

the output layer is less that 1 %, which is a good indicator of the accuracy of the ANN.
In order to further test the performance of the ANN, a time dependent computation is performed by

creating an ANN module for chemical kinetics calculations in an existing flow solver. For this purpose,
the profiles obtained by PREMIX calculation is used to initialize a 3-D computation. The initial PREMIX
profile is linearly interpolated onto a uniform grid of 256 points in the x direction. The same profile is later
replicated to all y locations, and the x − y plane is copied to all z locations, resulting a grid of 256x12x2
points in x, y and z directions, respectively. The profiles obtained by such a calculation is given in Fig. 3a-c
for H , CO mass fraction and temperature. As to yield a better comparison the DVODE calculations are
also presented in the figures. The H mass fraction exhibits small discrepancey approximately at 0.005 m.
Although not shown here, this defect shows itself for some other minor species too, but major species in
general are free from this problem. The error does not impact the resolved flame, as shown in the temperature
plot.

III.C. Flame Turbulence Interaction

III.C.1. Methane-Air Flames

Computation for a simple steady-state, laminar case is carried out to demonstrate that the developed ANN
model for chemical kinetics predictions is working. However, the realistic combustor applications are generally
highly turbulent and unsteady problems. LES computations are widely used for the reactive flow analysis
and the goal of the current section is to check the applicability of ANN to be used as a chemistry integrator
for LES computations. For this purpose, following an earlier LES26 and DNS27 study that exist in the
literature we consider a premixed methane-air flame front interacting with an initially generated isotropic
turbulent flow field. Similar to the previous section, the LES is initialized by using the solution of PREMIX-
CHEMKIN and the flame is at a lean condition (φ=0.8) with the reactants initially preheated up to 570 K.
Based on the initial turbulence level and the flame properties, the premixed flame is in the thin reaction
zone (TRZ) regime. A 5 species (CH4, O2, CO2, H2O, N2), 1 step reduced methane-air chemical kinetics
mechanism is used for ANN training and LES computations. Following the earlier LES,26 the subgrid scale
combustion processes are simulated with LEM by using 12 grid points inside each LES cell.

Two different ANN training procedure has been used for this section of the study. First one is based
on generation of train/test data-set for a single equivalence ratio (SER), similar to what was done for
the laminar computations. The second method, on the other hand, relies on training ANN for multiple
equivalence ratios (MER), so as to cover a larger portion of the chemical state space. This is particularly
important for turbulence computations with thermally perfect and mixture transport properties, since small
perturbations can change the composition space locally. The procedure of ANN training based on a SER is
exactly similar to the procedure outlined in the previous section. The solution of PREMIX is populated to
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Figure 5. Application of ANN to a turbulent premixed methane-air flame

1000 points and several ANN architectures are used to determine which one is better on predicting the test
data. Although it is generally advised to employ 1 or 2 hidden layers at most,21 for this particular study 2
hidden layer configuration was the worst case and an ANN architecture with 1 input, 1 output and 3 hidden
layers each having 8, 4 and 2 PEs, respectively, is constructed. Based on the second training approach,
a database of 1-D laminar premixed flame solutions for equivalence ratios ranging from 0.60 to 0.9 with
increments of 0.001 is generated. The PREMIX solution for each equivalence ratio compromises 50 points
which is interpolated to 500. ANN results based on the test data which is a part of the training procedure
is given in Fig. 4a-b. Fig. 4a, shows the ANN predictions and actual test data on the CH4 reaction rate -
Temperature hyperplane of the chemical state space. Here, the ANN predictions are comparable with the
actual test data and it is not possible to distinguish between both of them for most of the region. The only
considerable amount of disrcepancy occurs at the region where reaction rate is at maximum. The reason for
this is, this region is accessed only by couple of equivalence ratios, thus, is not well populated. A comparison
of the profiles with respect to the equivalence ratios is presented in Fig. 4b, where the agreement is quite
accurate.

Results obtained by using DVODE, ANN-SER and ANN-MER computations after 4 flow through time
is introduced in Fig. 5. Here, 1 flow through time is defined as l/u′, where l is the largest eddy size and u′ is
the turbulent fluctuation. The effect of different turbulent scales on the scalar field evolution is evident in the
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Table 1. Simulation parameters for flame turbulence interaction problem

u′/SL l/lf Regime [m] Box Size [cm]

FTI-Case 1 10 5 TRZ 3.0

FTI-Case 2 5 5 TRZ 5.0

Table 2. Flame Parameters used for flame turbulence interaction

Fuel Composition Equivalance Ratio SL [m/s] lf [m]

H2:CO:CO2:H2O 0.0678:0.113:0.0254:0.0650 0.6 0.2105 8.755 ×10−4

O2:N2 0.1507:0.5781

CH4 mass fraction surface plot obtained by DVODE computations as shown in Fig. 5a. The temperature
contours covers the maximum value of the CH4 on a thin region indicating the flame zone. This feature is
absent in the ANN-SER computations as given in Fig. 5b. The temperature contours seem to be spread out,
covering a larger area across the flame front. Also, the flame topology seems to be very different than the
DVODE calculations and do not exhibit any similar structure. On the other hand, ANN-MER computations
predict a very similar flame topology with DVODE calculations as shown in Fig. 5c.

A better understanding of the effect of different ANN training approaches can be achieved by investigating
the actual profiles along a cross section of the flame and is introduced in Fig. 5d-e. The profiles are obtained
across the flame front at y= 0.0125 m and 0.0101 for Fig. 5d and e, respectively. These locations correspond
to a convex and a concave region of the flame. The ANN-MER computation as seen in Fig. 5d, predicts a
slightly larger flame region as opposed to DVODE. In Fig. 5e, on the other hand, the agreement is better.
As it was observed in the surface plot, the predictions obtained by ANN-SER, is very different than the
DVODE results and look unphyisical. The region on the CH4 mass fraction and temperature hyperplane
of the chemical state-space that is accessed by DVODE computations and covered by the ANN MER-SER
training procedures is shown in Fig. 5f. Here, the ANN-SER results are shown with black circles and
it corresponds to a line on the state-space. The actual data obtained by DVODE computations is not
a single line, but it covers a region within the state-space. The ANN-SER approach, therefore, can not
provide predictions, since the region of interest is outside of its training region. The ANN-MER approach
covers a larger space on the state-space which is more general and adapts itself to local perturbations in the
composition state space in a better way.

III.C.2. Syngas-Air Flames

The applicability of ANN into flame-turbulence interaction computations by using LEMLES is studied further
in a configuration with an embedded pair of coherent vorticies in an isotropic background turbulence, where
there is wrinkling of the flame surface both by large and small scales. More specifically a flame front
interacting with a pair of spanwise vorticies superimposed on an isotropic turbulent premixed mixture is
of interest. This is more difficult test case as large scale wrinkling alters significantly the diffusion of the
species across the flame front. uc, max/SL and Dc/lf for this vortex pair is 50 and 5, respectively. The
fuel composition and the size of the coherent structure are held constant, and in connection with an earlier
study.28 Two different background turbulence levels are simulated, where the flames are in the thin-reaction-
zone (TRZ) regime. A 643 grid is used for all cases, and the size of the computational domain is selected
as to yield a minimum spacing of 3.3 times the Kolmogorov length scale. In the subgrid level within each
LES cell, 12 LEM cells (NLEM = 12) are used, which allows a resolution of 4 times smaller than η. The fuel
composition is PSI as defined by General Electric.23 Simulation parameters and flame properties for FTI
computations are summarized in Tables 1 and 2, respectively.

As it was shown in the previous section, since an ANN-MER approach is superior to ANN-SER, the
ANN training approach here uses only the MER technique. The training data is constructed for equivalence
ratios ranging from 0.45 to 1.10 with jumps of 0.005. Also, to avoid poor training due to the few number
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Figure 6. Actual test data and ANN predictions for an ANN-MER approach applied to a syngas-air flame
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Case 1
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Figure 7. Application of ANN to a turbulent premixed syngas-air flame

of data points associated with each single equivalence ratio, the gridding sensivity of PREMIX is increased
by adding more grid points to sections where there are large gradients, which yielded approximately 700
points. In total, there is 67128 train and 28768 test data. The ANN architecture consists of 5 layers, having
3 hidden layers with 20, 10 and 8 PEs, respectively. The exact ANN architecture is constructed following
the same logic that was outlined in the previous sections. The test data and the ANN predictions for the
normalized CO reaction rate is given in Fig. 6a. The data corresponds to an almost non-smooth function
of the reaction rate with respect to the equivalence ratio. The ANN can, however, predict the profile fairly
well. A close-up look of the profiles reveal that as there are more train/test points for each equivalence
ratio, the ANN predictions match with the actual data better than the earlier case. Although it can not
be detected well in these figures, the only considerable amount of difference between ANN predictions and
the test data is at the regions where there is not any reaction rate which corresponds to a value of 0.8 on
the normalized data. ANN fails to predict an absolute zero value of reaction rate in the post and pre flame
regions. This problem is overcome by adding a threshold to the ANN value, beyond which the reaction rates
are considered to be zero.

The LESLEM results obtained for both cases by employing ANN approach are given in Fig. 7a-b at
a non-dimensional time of 0.3. The time is non-dimensionalized with the characteristic time, which is
calculated based on the backgorund turbulence level as Dc/u′. Here, Figs. 7a and b shows the contour plot
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flame, Case 1
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Figure 9. Comparison of species profiles obtained by DVODE and ANN approaches for turbulent, premixed syngas-air

flame, Case 2

of temperature superimposed on the vorticity surface plot. The flame front is wrinkled both by the large
scale-coherent vortex pair and the small scale background isotropic turbulence. The small-scale vorticity in
the incoming turbulent field dissipates across the flame and only the large structures exist in the burned
side due to the high temperature values in this region. A detailed description of the interaction between the
flame and the vortical structures is given elsewhere.28 The comparison of the computed profiles across the
flame is given in Fig. 8a-c for Case 1. The profiles obtained for major species CO and H2O match well with
the DVODE computations. The minor species, O and OH , show discrepancy near the peak region. The
maximum error for both of the species is less than 18 %. However, both species mass fraction is on the order
of 10−3 and the impact of their error is not very severe on the major features of the flame.

The agreement between the profiles obtained for flame Case 2, as shown in Fig. 9a-c, however, is not as
good as it is obtained for Case 1. CO starts to be consumed earlier than that is calculated with DVODE
and the H2O mass fraction exhibits a peak value within the flame zone. The maximum value of the minor
species is overpredicted, almost 4 times for O and 2 times for OH . The profile for OH also corresponds to
an oscillation which is not physical. In order to gain further insight into the effect of ANN on the LEMLES
computations, the CO2 −OH hyperplane of the chemical state-space is presented in Fig. 10. Here, Fig. 10a
corresponds to the region that was accessed by DVODE, whereas Fig. 10b is by the ANN calculations. In
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Figure 11. Comparison of species profiles obtained by DVODE and ANN approaches for turbulent, premixed syngas-air

flame, Case 2 with refined table

Fig. 10b, the region that was covered within the initial ANN training phase is also given, and denoted with
black dots. The DVODE computations, similar to that was obtained for earlier methane-air case, supports
the idea why it is not possible to achieve training and expect accurate results for a SER computation. This
time, rhe region is more complex and can not be represented by a SER, which would actually correspond to
a single line on the hyper-plane. A direct comparison of the region covered by the ANN training phase and
the actual region constructed by DVODE computations reveal that only a single portion of the state-space is
actually accessed. Since the ANN is trained for a wide range, the accessed points with the ANN computation
is spread over the entire region. Moreover, the ANN training table is sparse in most of the region, which
would avoid ANN to fully generalize on the training data.

In order to get better solution, a new ANN training table is produced for a smaller portion of the chemical
state-space but with a finer resolution. The ANN is trained for a range of equivalence ratios from 0.5 to
0.7 with 0.001 increments. The CO2 − OH hyperplane representative of the region accessed through ANN
training and LEMLES computations is given in Fig. 10c. The accessed region by LEMLES for this training
file is very similar to the region covered by DVODE, as shown in Fig. 10a. For low values of the CO2, the
region used for training becomes very thin and cannot cover the accessible region as predicted by DVODE
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calculations. Hence, the ANN prediction spreads over a relatively larger area compared to DVODE. The
species profile as seen in Fig. 9. is much better than the results in Fig. 11. There is still an overestimation
of the minor species maximum value, but the error is smaller than the previous case and most importantly
the profiles do not exhibit any non-physical structure. Nevertheless this is going to be studied further for
future study.

As it was outlined in the previous sections, most important merit of using ANN against stiff ODE solvers
is its speed, and against ISAT and ILDM based look-up table approaches is its efficiency in terms of memory.
The time required for one time step iteration for the laminar, premixed syngas-air flame simulation with
DVODE is 0.21547 sec and for ANN is 0.06217, which corresponds to a speed up of 3.47. The size of the
table that is used for the training procedure is 23.8 MB. For the turbulent syngas-air flame simulation, the
time required for one iteration is 42.7969 sec for DVODE and 11.62101 sec for ANN, which approximately
corresponds to the same amount of speed up, 3.68. For the turbulent flame simulation, compared to the
laminar flame, the memory required for the ANN training is larger since a MER approach is employed. The
table that is used for training is 522.6 MB and hence, using ANN saved a considerable amount of memory.
Finally, for the turbulent methane-air flame a speed up of 1.98 is achieved. The reason why the amount
of speed up decreased compared to the syngas-air flames is related with the reduced mechanism that is
used. The chemical kinetics calculations for the methane-air calculations are made by using a small, 1 step
5 species reduced mechanism. Thus, the time required for the solution of the stiff ODE is not as huge as it
is for the syngas flame. Still, ANN saves a 93.4 MB of memory.

IV. Conclusion

Calculation of the changes in the chemical state-space due to the reactions, relies on employing stiff
ODE solvers. This approach may be very time consuming if the chemical kinetics mechanism used for the
simulations involves many species and steps. Look-up table approach, on the other hand, can be used for
decreasing the cost, but the memory requirement for this approach is usually huge. The current paper seek
for an optimal solution into this problem by using ANN approach. It has been showed that, in contrast to
employing stiff ODE solvers, ANN is very time effective, and the memory requirement is not as large as it
is for look-up table approach. The focus of the paper has been spent for the determinig the reliability of
the ANN predictions, which is highly dependent on the training procedure. For premixed flames it has been
showed that the ANN can be trained based on the solution of a 1D laminar premixed flame. This approach,
however, is not very effective for turbulent computations, since turbulence may perturb the composition
state-space locally which would not let it to be represented simply by one equivalence ratio. Training
based on multiple equivalence approach yielded better results as it has been shown for turbulent, premixed
methane-air and syngas-air flames. As long as the composition state-space is covered with sufficient number
of chemical states, ANN can be used succesfully for replacing stiff ODE solvers.

As for the next step of incorporating ANN into LES computations for decreasing the computational time
without sacrificing the accuracy is to use it as a subgrid scale combustion model. This would involve more
complicated ANN architecture but would drastically decrease the computational cost. The study is still
underway.
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Appendix

IV.A. 10 Step reduced Chemical Kinetics Model

Species:H2, H , O, OH , HO2, H2O, CO, O2, H2O2, CO2, CH4, CH2O, NO, N2

H + O2 = O + OH
H2 + O = H + OH
H2 + OH = H + H2O
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2H = H2

H + O2 = HO2

2OH = H2O2

O + CO = CO2

O + CH4 = 2H + CH2O
O + O2 + CH2O = OH + HO2 + CO
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