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The two level simulation (TLS) approach, based on the decomposition of the scales into
large and small-scale components has been applied as a subgrid closure for large eddy
simulation (LES) technique in order to simulate the near-wall features in high Reynolds
number flows. Current LES approaches use eddy viscosity type models to evaluate the
subgrid turbulence. In this proposed methodology, the subgrid turbulence is evaluated
by computing the small-scale field itself rather than modeling it. The capabilities of the
proposed methodology have been tested and validated for a fully developed turbulent
channel flow for various Reynolds numbers. Additionally, simulation of high-Re flow past
a three-dimensional bump is carried out to demonstrate the ability of this approach for
complex flows. Results show that the proposed model will increase the accuracy of the
LES computations without requiring a drastic increase in computational resources.

I. Introduction

LMOST all engineering flows are turbulent, and numerical simulation of these types of flows is pro-

hibitively expensive due to the presence of wide range of scales in both space and time. A simulation
that resolves all flow scales is called direct numerical simulation (DNS) but the high computational cost of
DNS makes it impractical for realistic engineering flows.

An alternative approach to DNS is the large eddy simulation (LES) technique. In LES, the computational
cost is reduced by applying a low-past filter to the turbulent flow, thereby eliminating many of the small-
scales below the filter width. However, the unresolved high-frequency small-scales can have a significant
effect on the evolution of the resolved flow field and therefore its effect is modeled in LES using subgrid
(SGS) models. The most popular approach for SGS closure is the use of an eddy viscosity closure, which
appears reasonable since the small scales are supposed to be isotropic and to primarily provide dissipation
for the energy transferred from the large scale.

LES is currently a most promising method for studying complex flows and has been successfully applied
to many type of problems.! However, in the near-wall region of attached flows, the SGS modeling is a difficult
problem for several reasons. First, the uniform filtering operation is ill-defined near the walls, where the
filter width at a given point extends beyond the wall boundary. Second, near the wall, flow structures scale
in viscous units. Hence, the near-wall resolution has to be fine enough to capture the dynamically dominant
small-scales. The number of grid points required to resolve the near-wall resolved LES scales as O(Re?2).2
In addition, the small-scales in the near-wall region are strongly anisotropic. Since SGS models are derived
with the assumption of small-scale isotropy, they cannot accurately represent the turbulent stresses near the
wall. Consequently, for an accurate LES of wall-bounded flows, near-wall resolution comparable to that for
DNS is still needed. This high resolution requirement limits the use of LES to moderate Reynolds numbers
for wall-bounded shear flows.

To overcome this resolution requirement, several near-wall modeling approaches have been proposed in
recent years. The objective of the near-wall modeling approach is to replace the no-slip velocity boundary
conditions at the walls with approximate conditions. These conditions account for the effects of the near-wall
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turbulence on the outer flow, which enable the LES to accurately capture the large-scale features away from
the walls without resolving the inner layer. Examples of many near-wall models can be found in the reviews
of Piomelli and Balaras® and Cabot and Moin.*

Another approach to overcome this resolution requirement is to use subgrid simulation approaches, which
are based on multiscale models. Several multiscale models have been proposed in recent years, including, the
Two Level Simulation (TLS) model by Kemenov and Menon,® the Variational Multiscale Method by Hughes
et al.,%7 the Dynamic Multilevel Method by Dubois, Jaubertau and Temam,® and the Rapid Distortion
Theory by Laval, Dubrulle and Nazarenko.®!? All these models are based on decomposition of the flow
field into the resolved (large-scale) and unresolved (small-scale) components. From this decomposition, the
coupled system of large and small-scale governing equations can be derived. In these models, small scales
are explicitly simulated by solving the small-scale equations.

The new approach developed here is based on coupling the LES equations to the TLS model of Kemenov
and Menon.5>11:12:13:14 T[S model allows an explicit simulation of both the resolved and the unresolved
motions. In contrast to conventional LES technique where the major effort is concentrated on modeling
subgrid scale terms, in TLS the major effort is focused on modeling the small-scale velocity itself. This is
acquired by decomposing the velocity field into large and small-scale components. Past studies of decaying
and forced isotropic turbulence,®!* mixing layers®!%13 and fully developed channel flow!! 213,14 haye
shown that the baseline TLS model can capture important features of high-Re turbulent flows using relatively
coarse grids under a wide range of conditions. In this study, TLS approach has been applied as a near-wall
LES closure in order to increase accuracy of near-wall turbulence simulations without paying a DNS type of
computational cost.

This paper is organized as follows. Section II discusses the governing equations of TLS and LES modeling
approaches and the new subgrid turbulence simulation approach. Section III presents the results obtained
by the application of the near-wall TLS-LES model for fully developed turbulent channel flow at Reynolds
number based on friction velocity ranging from 590 to 2400, and for three-dimensional boundary layer flow
over an axisymmetric hill at Reynolds number 130,000. Finally, Section IV summarize the conclusions and
the direction for future studies.

II. Governing Equations

A. Overview of the TLS Model

Although the original TLS formulation by Kemenov and Menon® 11:12:13:14 ig for incompressible flows, to

give the current TLS approach more generality, we extend it to fully compressible flows. The governing
equations of motion for unsteady, compressible fluid are given as follows:

Op  Opu; 0
8t 81‘1 B
Opu; 0 op 0Tij
i v L = _“Fs. J
ot + o, e 82, * Ba;
6pE 0 0 0q; 0
Bu) = —— (pu:) — s 1
8t + 6$j (p u’b) 6.73'1 (puz) awz + 61'1' (Tl]uj) ( )
where p is the mass density, p is the pressure, E is the total energy per unit mass, u; is the velocity vector,
q; is the heat flux vector (g; = —k 8$Ti ), and 7;; is the viscous stress tensor (7;; = ,u(g;‘; + gzj )— 3ug;‘: dij)-

In the TLS approach,®11:12:13.14 a]] flow variables are decomposed into large-scale (LS, superscript L)
and small-scale (SS, superscript S) components as:

p(x,t - pL( ) + pS(a:,t), pui(mat) = (pui)L(xat) + (pui)s(w,t),
p(a,t) = p"(z,t) +p°(2,t),  pE(z,t) = (pE)"(z,t) + (pB)*(x,1)
ui(z,1) up (@,8) +uf (2,1),  T(w,t) =T (z,t) + T°(x,t) (2)

Here, the LS field is obtained by applying a LS operator L” to the total velocity, which is defined by
Kemenov and Menon® as:

ui" (z) = [ui(2)]" = L% ui() 3)
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Similar to decomposition given in Eq. (2), any variable can be decomposed into LS and SS components:

(o)™ + (ou)® )t +uf) = [((pu® + (ou)®) b + )]+ [((ou” + (o)) b )" @

By substituting the decomposition given in Eq. (2) to the Navier-Stokes equations (1), the baseline TLS
equations are given explicitly for both large and small scales, respectively as:

o L
gt g )" = F
2 AL i AL S L Sy _ _3PL % S
5" + g () + d)) (f +45) = —F L+ B
0 0
S (0E)" + 5= ((0B)" + (bE) ) (uf +uf) = + %) +uf)
dqF 0
Bt T )+ @
0
6pt + g ) =
9 s+ 9 A\L NCAY s__apsaiij' L
6t(pul) + 33]]‘ ((puz) + (PUz) )(Uj +Uj) = oz, + 8:17]- +Fm,z’
0 0 0
S 0B)S + o ((0B)" + (pE)S ) (wh +uf) = =5 (0" +p®)(uf +uf)
oq;? 0
9z +%(T£+T5)(Uf+uf) + Ff (6)

where, F'¥ and FL are the small-scale and large-scale forcing terms. In these equations the subscript ¢, m and
e represents the source terms in the continuity, momentum and energy equation, respectively. These forcing
terms are mathematically the coupling between the large and small-scale equations and can be expressed as:

opt 0 005 0
CL’i - c'?t B 6$~(pui)L ’ ng - 6pt Oz (pui)?
i opt ot 9 opS | 07
L _ _9 NL _ 9P ij s __Y NS 9P ij
Py = = g5 (ow)™ = 5 oz; Py = =g (pus)™ = 5 oz;
0 oqF 0 oq?
L _ ¥ L [ s _ _ 2 S _ [
Fe,i - ot (pE) 65[3, ’ Fe )8 ot (pE) 65[3, (7)

Note that, the TLS equations (5, 6) are different forms of the Navier-Stokes equations (1) written for different
unknown velocities and they do not involve any type of filtering. Thus, the TLS formulation is free of the
commutativity issue, which is the main restriction of LES to the wall-bounded flows and non-uniform grids.
This makes TLS a viable model for all types of flows, specifically for wall-bounded flows. These features
have been extensively discussed and validated in earlier studies.®

In order to have the same structure as the LES equations, the TLS equations can also be re-written in
a different equivalent form. Substituting Eq. (4) into Egs. (5, 6) gives another form of TLS equations as
follows:

aapt +ai,( w)t = G2
g(ﬂuz %[(puz (pus) S)(uf+uf)]L = —giﬂLg%fﬂLan,i
Bat )+ 5 [( S)(U,L+uf)]L _ [5§3i(pL+pS)(uiL+Uf)]L
Zi’ﬁ[aim’zwsxu s+ e ®
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Here the LS and SS forcing terms are given by:
GL = FL GS = FS~
0 0 0 0
L FL— L__ ¥ i'L S.:FS.—— ’L'S_— i'S
Gm,z m,i at( ) 633]' (pu u]) ? Gm,z m,i 6t (pu ) az.j (pu u])
0 0 0
Gii = Fli= g -(pBu)’ = o - (ui)" + 5 - (riju;)*
0 0 0
Ges,i = Fés:i — 6;1;1 (pEUl)S — 6—%071,&1)5 + a—mz(’rz]u])s (10)
and note that both are equivalent to the original Navier-Stokes equations (1) written as®
Gl + G35, =0
GL., + G5,=0
G, + G5, =0 (11)

These equations hold only when each LS and SS forcing terms are simultaneously zero (i.e., Gf, ; =0, Gf, ;=
0,GL ;=0,G5, ;, =0,GE; = 0,G5; = 0). If not, the small scale field obtained by solving SS equations will
have contributions at the small wave numbers (i.e., at the large scales). The details and justification of these
arguments are given by Kemenov and Menon.? By substituting Eq. (11) into the LS and the SS equations,
the final form of the TLS equations can be obtained as:

6515 ai(p“")L =0
s g (ot o] = G
%(pE) +ai[((pE) (B S) u o+ ) }L = [aiz(p %)k + )]
—gii,.*[aiz” + 7Y (uk + uf) ]L (12)
%+%WN:0
it s g (o ) o +)] = -G T
550" + 5 (0B + )k )] = [t )t )]
—gi"i + [+ + )] (13)

Even though the TLS approach is free from issues associated with commutation errors, it is still compu-
tationally expensive for high Reynolds number flows. Solving the full TLS equations (12, 13) is equivalent to
performing DNS, and therefore, additional simplifications and modeling are necessary to reduce the overall
cost of simulating the small-scale equations. Modeling small-scale equation and numerical implementation
of the model are given in detail in the following sections.
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Figure 1. One dimensional TLS lines imbedded in an LES control volume.

1. Modeling Small Scale Equations

In the TLS model, both resolved and unresolved motions are explicitly simulated. If this simulation is done
in three dimension, this method is no different from DNS, and hence it will be computationally too expensive
for complex flows. To reduce the computational cost and still keep the feasibility of the model, the small-scale
field is simulated in a reduced dimensional form using a modeled version of the SS equation.

In the TLS model, the small-scale field u; are solved on three one dimensional lines embedded in the
three-dimensional domain shown in Fig. 1, such that uf = uj (s;,t)e} = uj,e}, where i =1,2,3;1=1,., N,
where N is the total number of one-dimensional lines, s; is the coordinate along the line and €l is the unit
base vector of that line. Although lines can be in any shape, in this study for channel flow simulations, the
small-scale lines are orthogonal to the corresponding LS coordinates as shown in Fig. 1, and for the three-
dimensional bump flow simulation, these lines are body fitted lines which follow the shape of the geometry.
Applying this to SS Eq. (13) leads to the simplified form of the small-scale equation on each line Ij:

ap® 9 s _
W + a_l'i(pUZ’lei) = 0
9, s, 0 \L 1S\, L syt ap® 675
i Puiaed)” + 5[ (e + (pusae)*) (f + (iae))]” =~ + 5
0 0 3 0 3
(0B + = [((bB) + (bB)" ) (uF + (wiae) )] = =[5 (0" + ) (ul + (wiaeh)®)]
oq? o) s
3+ [ T+ (use))] (14)

Reducing the SS fields on to the three one-dimensional lines is computationally more efficient; however, this
reduction brings couple of problems to the numerical implementation of the SS equation. For a given line,
the first and second order derivatives orthogonal to each of the line direction are unknown and have to be
modeled. The model assumptions and their justifications for these terms are given in detail by Kemenov
and Menon.? Here, for completeness, we summarize the key features of these assumptions.

For a given line [y,

(i) the SS second order derivative along the line is equal to the averaged sum of the SS second derivatives
along all three orthogonal directions:®

Ouf 1= O%uf

7 J

(ii) the convective derivatives of the SS velocity in the transverse directions to the line are neglected:®

g0+ ) uf +ub)]” = S50 + uh) ) + )] )

Further analysis of these assumptions for more complex geometries will be the subject of future studies.
If the SS lines are oriented with the LS grid, then these SS equations (14) become particularly simple
and boundary conditions for SS equations can be imposed at the three-dimensional domain boundaries.

5 of 16

American Institute of Aeronautics and Astronautics



E(K)

1 10 ] 1(‘30 1000 -4 -3 -2 -1 0 1 2 3 4
(a) (b)

Figure 2. Evolution of the SS spectral energy (a) and the SS velocity (b) along a near-wall spanwise line
(z/H = 0.5) in three-dimensional bump. LS grid resolution is shown by dotted vertical line.

2. Numerical Implementation

Numerical implementation of the TLS equations is based on integration of LS equation and coupling the
SS dynamics on the LS grid. The key point of the coupling is done by assuming that the knowledge of the
SS field is only important at the LS time in order to close the LS equation. This is similar to the classical
LES approach closure of the SGS terms. The detailed information of the numerical implementation can be
found elsewhere.!!-12:13 Here, for completeness, the four main steps of the numerical implementation of TLS
equations summarized as follows: First, at a given time step, the LS field on each 1D SS line is approximated
by linear interpolation of the LS field. Then, the SS field on each line is evolved from zero initial condition
and corresponding boundary condition until the SS energy matches with the LS energy near the grid scale
cut off. This is illustrated in Fig. (2), where evolution of the SS spectral energy and the SS velocity are
shown for a spanwise line located at /H = 0.5 for three consecutive instants of time. Using the SS field,
the unclosed terms ufuf ,uful and ufuZL in the LS equation are calculated on the LS grid by averaging
over the lines intersecting at the LS grid point. Finally, the LS velocity is advanced to the next time level
tk | =tk + At" by integrating the LS equation using a conventional three-dimensional finite-volume scheme.

B. Overview of the LES Model

In the conventional LES, the flow variables are decomposed into large-scale (resolved-denoted by an over
bar) and small-scale (SGS) (unresolved) components by applying a filtering operation,

F(o,t) = / F@ )G (z,a : B)da’ (17)

where, G is the filter function and A is the filter width. From this definition, the Favre filtered variable
is given as f = pf/p for the compressible approach. Applying this filtering operation to the Navier-Stokes
equations and assuming that the filter commutes with differentiation, the general form of the LES equations
in the Favre filtered form are obtained:

op _  opui
ot - 63]1
O o
6tz = —%j[puiuj +p(5ij —Tij +T:jgs]
6ﬁE 6 T —\~ — ~ 898 sgs
o = o [((PE +P)ui +q; — UyTji + H}*" + 07f’] (18)

where, u; is the velocity, P is the pressure, 7;; is the viscous stress tensor, E is the total energy and g; is
the heat conduction term. The subgrid terms resulting from the filtering operation represent the small-scale
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effects on the resolved scales in the form of additional stresses and fluxes. The subgrid terms that require
closure are:

= e i)
H” = plBui — Bij) + [pu; — pii]
o = [T — Ty (19)
The simplest models for the subgrid terms are eddy viscosity type of models of the form Tfjg f— %Tkk =
—21,S;; , which relates the subgrid scale stresses Tfjgs to the large scale strain-rate tensor §,-j = %(g;‘f ng ).
i i

Here, v; is the eddy viscosity which is the unknown term.

One of the first approaches to determine the eddy viscosity coefficient was introduced by Smagorinsky,'®
as vy = C’SA2|S |. Here, C; is the Smagorinsky coefficient, A is the filter width which can be computed as
A = (Azy A zy A xs)'/? and |S| = 2(5;;Si;)'/? is the large-scale strain rate tensor.

Another approach to determine the eddy viscosity is based on the subgrid kinetic energy, which is used
to obtain the velocity scale. The general form of the K-eqn can be cast in the form

opks9® 0 ,__ 0 vy Ok®9°
5L k598 — psgs _psgs . — (5L 20
ot + 8.’17, (puz ) + 63;1 ( oK 8:1:2 ( )
Here, P*9% and D*9® are the production and dissipation of k"%, respectively. The production term is defined
as, P%9% = —T;jgs(g—;l:;), whire Tfjgs is the modeled subgrid stress tensor, Tfjgs = —2p1(Sij — %Skk(sz'j) +
25k°9%5;;. Here, v; = C,A(k*9%)Y/? is the eddy viscosity The dissipation term is modeled as D%® =

Cep(k®e)% /A

The coefficients C,, C can be evaluated based on the turbulence theory as C, = 0.067 and C, = 0.916
or adjusted dynamically as part of the solution using a localized dynamic procedure for the subgrid kinetic
energy (LDKM).!%:17 In the current study, we follow the latter approach and obtain these coefficients using
a scale similarity model. Although the details of the LDKM are given elsewhere, for completeness, we
summarize the key features of the model here.

Dynamic procedure is based on the experimental free jet studies by Liu et al.,'® where it has been

suggested that the subgrid stress Tff’ ® at the grid filter level A and the Leonard’s stress L;; at the test filter

level 3(: 2A) are self-similar. In the LDKM model, this observation is further extended for the subgrid
stress 7;{° at the test filter level. Thus, using scale similarity approach, the model coefficient C, is obtained
as:

In the above expression L;’j = L,’j — %ﬁ ktest(si]‘ Where, L,’j = —2%0,,\/ ktestﬁ((é’zj) — % (S;J>(5,]) -+ %ﬁ k‘test(si]‘

and M;; = —p Vkweat A((Si) — 1(Sij)0i5).
A similar approach is used to obtain the dissipation coefficient C; such that

(21)

_ Bll’l sgs 6“1' —89g8 6“2’
C.= 5 kf!; (73 axj) (Ti ><6:1:j>) (22)

where p' is the total viscosity, defined as u' = p + p;. Here, p is the molecular viscosity and p; is the eddy
viscosity at the grid filter level.

C. Relationship between TLS and LES approaches

The solution of the LES equations is obtained at discrete points, therefore, in LES, in addition to the explicit
filter an implicit projection of the flow field @; is used that makes it possible to represent the field on a finite
grid. Similar to implicit LES, in the TLS approach the large scale momentum (pu;)* represents not only
the filtered quantity but also the large scale momentum at LS grid points. Although its interpretation is
different, the LS Eqgs. (12) have the same form as the filtered LES Eqgs. (18). These equations can be written
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in a different equivalent form to show the similarities between the subgrid terms in the LES equations and
small-scale interaction terms in the TLS equations as follows:

opt 0 I
ot _6_.171-([)”’)
9 N 9 NL, L Ls. . L, 1"
a(puz) - _%j[(puZ) Uu; +p 51] — T +Tij]
9 L _ 9 L, L L,INL , L L, INL , 7.1 A.LL

In the direct simulation of the subgrid turbulence, the scale interaction terms are calculated directly from
SS and LS fields. The LS part of the scale interaction stress is:

it = [leuu] — [oubut]” = [(oudbuf + (ou)Suf + (oui)*us] (24)

Similarly, the LS part of the scale interaction enthalpy flux:

5 L L L, Ll L *
B = B - [(oB)yut] + [(u:) - oFub)]
L L
= [(oB)"uf + (pB)Sul + (pE)Suf] + [p"uf + pSul + pSuf] (25)
The LS part of the scale interaction viscous work:
L
G = (rguy)® — (thub)t = [rhud + rSul + rSus] (26)

The small scale interaction terms TQ,-L, ﬁiL and 6;* are closed if the small scale field is known which can be
obtained by solving the SS Eqs. (14) defined in the TLS formulation.

This formulation shows that LES equations can also be obtained from the TLS methodology without
applying any kind of filtering. The scale interaction terms in the TLS formulation and the subgrid terms
in the LES formulation are both similar, which proves that the subgrid terms in the LES equations can be
directly calculated from the TLS equations without using any eddy viscosity model.

D. Near-wall coupled TLS-LES model

Near-wall TLS-LES approach is based on direct modeling of the subgrid stresses
near the wall region with the TLS model and using traditional LES modeling for

the bulk flow. The TLS evolution equations for SS are solved only in the inner N

region and boundary conditions must be applied at the physical boundaries. The {§,

wall-normal TLS lines begin at the no-slip wall (y = 0) and extend up to the edge 4 ”

of the near-wall region (y = Y) (Fig. 3). At y =Y, two boundary conditions

have been evaluated: the first one is a zero gradient boundary condition for the | ____| i

small scale velocities and the second one is the direct calculation of the small

scale velocities in terms of the local subgrid kinetic energy k®9% (obtained from 2] - 4

the K-eqn (Eq. 20)). This approach assumes that small scales are isotropic at —

the edge of the inner region.

Boundary conditions at y = 0: Figure 3. Illustration
uf =0,7=1,2,3 of Near-wall TLS-LES

and at y =Y: model.

Zero gradient boundary condition Oui /oy =0, i=1,2,3
or fluctuating boundary condition ui = ./%ksySW@', 1=1,2,3

where W; is a random number with zero mean. The wall-normal TLS lines can also be extended to another
LES cell to improve the boundary condition for the small scale equation in the overlapping region.
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Figure 4. Near-wall TLS-LES mean quantities.

35 T

# TLS-LES

Figure 5. RMS velocity fluctuation profiles for Re, = 590 computed from TLS-LES, pure TLS and DNS.'?

ITI. Results and Discussion

A. Turbulent Channel Flow

The fully developed channel flow has been widely studied in the past, and both experimental and DNS data
are available for comparison purposes. Pure TLS results of Kemenov and Menon'!12 show the capability
of the model for capturing the near-wall flow energetics of 3D turbulent flow. Here, we present the results
based on the new near-wall TLS-LES approach.

The fully developed channel flow of width 2h, where h is the channel half-width, is simulated by applying
periodic boundary conditions in the stream-wise and span-wise directions and no-slip conditions in the cross-
stream direction. Calculations are performed for Reynolds numbers based on friction velocities of 590, 1200

Table 1. Simulation parameters and mean flow variables for TLS-LES channel flow simulations

Grid Re, AytS5 AytES Cy
DNS' 384 x 257 x 384 590 0.042  5.76x1073
TLS-LES 32 x 40 x 32 590 1.067 9.395  5.66x107°
TLS-LES 32 x 40 x 32 1200 1.320 15.861 4.58x1073
TLS-LES 64 x 50 x 64 2400 1.436 17.041 3.89x103
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Figure 6. Near-wall TLS-LES rms quantities.

and 2400. Near-wall TLS-LES results for statistically steady flow are compared to Moser’s'® DNS data for
Re, = 590 and Wei’s?® experimental data for Re, = 1200. Here Re, = u,h/v, where u, = \/vdu/dy|,—o is
the friction velocity.

The computational domain is discretized by 32 x 40 x 32 LS grid cells for Re, = 590 and Re, = 1200
with uniform grid in the periodic directions (streamwise and spanwise) and nominal stretched grid in the
wall normal direction. As the Reynolds number increases, only a smaller portion of kinetic energy can
be captured on the LS grid. Thus, for the high Reynolds number (Re, = 2400) case, the resolution was
increased to 64 x 50 x 64. In all cases, a uniform grid of 8 SS cells per LS cell is used in the periodic directions
and a variable grid of 10 to 12 is used in the wall normal direction. The near-wall region for TLS-LES are
represented by three LS cells extending up to y™ =~ 50 (y* = yu,/v). The near-wall SS grid spacing is kept
approximately y* ~ 1. The standard LES with dynamic Germano subgrid model is used in the outer region.
The simulation parameters and the mean flow variables are given in Table 1.

Figure 4 (a) presents the near-wall TLS-LES results for the mean velocity profiles over the Reynolds-
number range indicated in Table 1. For Re, = 590 the DNS data of Moser!? is used for direct comparison.
For all cases, the inner law ut = y¥*, and log law, ut = 2.44Inyt + 5.2, is also plotted for comparison.
Near-wall TLS-LES model predicts slightly higher values in the buffer region (10 < y* < 30) for Re, = 590
which might be caused by the coarse LS grid (which was chosen deliberately as a worst case scenario). The
overall mean velocities are predicted quite well with the near-wall TLS-LES model. At all Reynolds numbers,
the physically realistic viscous sublayer is captured reasonably well.

Figure 4 (b) shows the computed skin friction coefficients compared with the DNS data of Moser!® and
the turbulent correlation of Dean.2! The Reynolds number used in this plot is based on the bulk velocity and
the channel width, and the friction coefficient is defined as Cy = 2(u, /Uy f)z. Good agreement is obtained
with the DNS Cy value at Re,; = 590. Overall, the friction coefficient demonstrates the right trend.
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(a) Re, = 590 (b) Re, = 1200

(c) Re, = 2400 (d) Re, = 2400

Figure 7. Near-wall TLS-LES calculations: (a-c) Instantaneous (solid lines) and volume averaged (dashed
lines) stream-wise spectra; (d) Isosurfaces of the streamwise velocity fluctuations: v’ = +3 (blue) and ' = -3

(green).

Figures 5 and 6 show the rms velocity fluctuations predicted by the near-wall TLS-LES model. In
Fig. 5 near-wall TLS-LES computed rms velocity fluctuation profiles for Re, = 590 are compared with
the DNS calculations of Moser!'® and results obtained by pure TLS calculations. TLS based models (pure
TLS and near-wall TLS-LES) correctly predict the location and the peak value of the streamwise rms-
velocity fluctuation for Re, = 590, but produce a broader profile. However, the near-wall TLS-LES model
underpredicts the rms-velocity fluctuations compared to the pure TLS result in the bulk flow. This is due
to the highly dissipative behavior of the Germano model, which is used for the LES bulk flow computations.
We plan to revisit this with the one-equation model for the subgrid kinetic energy!®!7 later.

In Fig. 6, near-wall TLS-LES results for rms-velocity fluctuations are compared to the DNS result of
Moser!? and the data of Wei.2® For two high Reynolds cases u},,, lead to very similar results, demonstrating
universality of flow properties close to the wall at high Reynolds numbers.

Figures 7 (a), (b) and (c) show instantaneous streamwise energy spectra. 1D-line and plane-averaged
spectra are plotted and compared to the slope of k~3/3. It can be seen that the near-wall TLS-LES approach
recovers both LS and SS spectras. Finally, high and low-speed streaks, shown in Fig. 7 (d) for Re, = 2400
for near-wall TLS-LES case, exhibit a typical near-wall pattern.

Overall trend of the TLS-LES results show the capabilities of the proposed model for near-wall applica-
tions using relatively coarse grids.
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(a) Predicted with near-wall TLS-LES (b) Experiments

Figure 9. Oil-flow visualizations and instantaneous streamlines in the near-wall region.

B. Three Dimensional Flow over an Axisymmetric Hill

To show the capability of the proposed model for complex geometries, a three-dimensional boundary layer
flow, investigated experimentally by Simpson et al.,22 is chosen. This flow involves three-dimensional un-
steady separation and reattachment. High Reynolds number of this types of flows are of considerable interest
because of their relevance to practical flows. In one of the recent study,?® LES with the LDKM subgrid
model have been applied to the same flow and complex flow pattern was predicted quite well. In this study
LES using LDKM subgrid model is revisited for completeness. The results are compared with Simpson et
al.’s?? experimental data. Then, this flow is simulated with the near-wall TLS-LES model.

Figure 8 presents the geometry of the configuration in the streamwise and wall-normal directions. The
hill height is H = 0.078m with the circular base of radius R = 2H. The zenith of the hill is about 3.4H
downstream from the inflow boundary. The computational domain extends 10.0H in the spanwise and 9.5H
in the streamwise direction. The shape of the hill is defined as y(r)/H = —1/6.04844[.J,(A)I,(Ar/R) —
I,(A)J,(Ar/R)] where A = 3.1926, J, and I, are the Bessel and modified Bessel function of the first kind,
respectively. The Reynolds number based on height H and inflow velocity (Uy.;=27.5 m/s), is approximately
130,000.

The computational domain is discretized with 192 x 184 x 144 grid points, with a small stretching in
the wall normal region and on the lee-side of the hill for LES-LDKM case. For this grid the minimum grid
resolution in the wall-normal direction is about y = 56um. The minumum grid resolution is estimated as
(Azt, Ayt, Azt) = (100, 4, 120) in terms of viscous wall units. For near-wall TLS-LES case, relatively
coarse grid compared to full LES case is used. The computational domain is discretized by 48 x 46 x 36 LS
grid cells. The SS resolution for streamwise lines is 385, for spanwise lines 289 and for wall normal lines 51.
The near-wall region for bottom wall is represented by five LS cells extending up to 4 ~ 40. The near-wall
grid spacing for LS is y = 188um and for SS is y = 15.6um in the wall-normal direction.

At the lower wall, no-slip conditions are enforced for velocity and k®9°, whereas at the upper wall,
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(b) Predicted Cp, with LES-
LDKM

(c) Predicted Cp with near-wall TLS-LES

Figure 10. Static-pressure coefficient contours over the hill surface.

slip boundary conditions are enforced. At the outlet, characteristic boundary conditions are applied to all
variables. For near-wall TLS-LES case, initial LS velocity field was determined from the full LES-LDKM
flow field.

Figure 9 presents a comparison of the predicted surface streamline pattern with the experimental oil-flow
pattern. Based on surface streamline patterns, the flow on the lee side of the bump is very complex and
shows 3D separation and reattachment because of both streamwise and spanwise pressure gradients on the
lee side. Qualitative agreement is found between the near-wall TLS-LES results and experimental oil flow
visualization.

Figure 10 presents the computed surface distribution of static pressure coefficients (Cp) and the cor-
responding experimental result. There is a good similarity in both features and magnitudes between the
LES-LDKM computation and the experimental data. In the spanwise direction, both LES-LDKM and exper-
iments show a symmetric pressure distribution. Figure 10 (c) presents the near-wall TLS-LES model results
for the pressure coefficient. It is clear from this figure that the near-wall TLS-LES is capable of predicting
approximately the correct pressure distribution around the bump. There are some discrepancies in the lee
side where the flow is separating and this is an issue to be addressed in the future. Both results show that
as the boundary layer approaches the leading edge of the hill the pressure increases. The pressure then
decreases at the zenith of the hill as the flow accelerates over the hill. The position of minumum pressure is
predicted accurately by all (LES-LDKM and near-wall TLS-LES) simulations.

Wake measurements are performed at 3.69H downstream of the zenith hill, where the flow has reattached
on the wall and turbulent boundary layer has reformed. Figure 11 presents a comparison for time-averaged
streamwise and spanwise velocities at 3.69H for various spanwise locations. LES-LDKM and near-wall TLS-
LES results are compared with the experimental data. All models overpredict the streamwise velocity, which
can be related to the coarser spatial resolution used away from the wall. However, cross-stream velocity
profiles are well predicted with LES-LDKM and near-wall TLS-LES models as shown in Fig. 11 (b). From
Fig. 11, overall agreement between predictions and experiments is reasonable.
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Figure 11. Mean flow quantities predicted by LES-LDKM (solid lines) and near-wall TLS-LES model (square
symbols).
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Figure 12. Secondary flow vector field predicted with near-wall TLS-LES model.
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Figure 12 shows the instantaneous secondary flow vector field predicted with near-wall TLS-LES model
at z/H = 3.69 plane. The presence of streamwise counter-rotating vortex pair, located at y/H = 0.2, is
observed, which is consistent with the observations of Perrson et al.2*

Snapshots of the LS and SS vorticity magnitude isosurfaces at a level of [@”| = 1100 and |@®| = 300 are
shown in Fig. 13. Isosurfaces are colored with local spanwise velocity. It is seen that the simulated SS field
responds to the LS field by creating fine scale SS field at the high gradient LS regions.

Current results show the capability of LES, using LDKM subgrid model, for complex flows. The near-wall
TLS-LES of this flow shows qualitative agreement with the experimental and LES results. Overall results
looks reasonable for this kind of coarse resolution. A finer resolution is expected to provide better results
and will be adressed in the near future.

IV. Conclusion

The resolution requirement to predict real flow features near a no-slip wall limits LES and DNS to
relatively low Reynolds numbers. To overcome this resolution requirement, a new model is proposed in
this paper. TLS model is applied as a subgrid closure for LES equation near the wall. This proposed
model is applied to fully developed turbulent channel flow. Results of the near-wall TLS-LES channel
flow suggests that near-wall implementation of TLS may be a viable alternative subgrid model for LES
of wall bounded flows. In this simulation, dynamic Smagorinsky model by Germano is used as a subgrid
closure for LES bulk flow region. Germano model has some limitations in conventional LES models and
these limitations remain in the near-wall TLS-LES approach. It is believed that using localized dynamic one
equation model (LDKM)'6:17 in the bulk flow region as a subgrid closure will improve the solutions. A three-
dimensional turbulent boundary layer flow is simulated to analyze the LDKM subgrid model. Results show
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(a) LS (b) Resolved SS

Figure 13. Instantaneous LS (a) and resolved SS (b) vorticity magnitude isosurfaces predicted with near-wall
TLS-LES model. Isosurfaces are colored with local spanwise velocity.

good agreement with the experimental data. Then TLS-LES is used as a near-wall subgrid closure model
for high-Re number wall bounded flows past a three-dimensional bump. Overall results show the capability
of the model for high Reynolds number complex flows using very coarse grids. The statistical analysis of
this complex flow and further investigations of small-scale equation model assumptions for separated flows
are the subject of future studies.
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