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The present work evaluates the potential of a hybrid RANS-LES method to predict
the unsteady flow over airfoils in static and oscillating motion. The method implemented
(hereafter termed HRLES) blends the k − ω SST RANS model with a localized dynamic
k

sgs one-equation LES model (LDKM). The unsteady 2D and 3D flow over a NACA 0015
airfoil is computed to evaluate the model performance. The aerodynamic characteristics
of the static configuration are in reasonable agreement with experimental results. For
the oscillating case, three conditions are simulated: attached flow, mild stall and deep
stall. Two-dimensional simulations are conducted for the three dynamic stall conditions,
and only the deep stall case is simulated in 3D so far. Overall, the unsteady loads for the
attached and mild stall cases show good agreement with experiments. For the mild and the
deep stall cases, the HRLES is able to predict flow separation and vortex shedding during
the downstroke. In general, these results demonstrate the potential of hybrid methods
to correctly simulate complex high Reynolds number flows encountered in aerodynamic
applications.

Nomenclature

Cp = specific heat at constant pressure t = time
Cp = pressure coefficient T = temperature
e = internal energy T ′ = time average interval
E = total energy ui = velocity vector
Eturb

j = turbulent energy flux vector xi = position vector
G = filter function µ = molecular viscosity
k = modeled kinetic energy ρ = density
Pr = molecular Prandtl number τij = molecular stress tensor
PrT = turbulent Prandtl number τ turb

ij = turbulent stress tensor
Prod = production φ = dummy variable
qi = heat flux vector ω = specific dissipation rate
p = pressure ψ = dummy variable

Superscript and subscripts

sgs = subgrid scale rans = Reynolds Averaged Navier-Stokes
hyb = hybrid trans = transport
src = source turb = turbulence, RANS or LES
rans/sgs = RANS or LES
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I. Introduction

D
ynamic stall is a complex phenomenon encountered in many aerodynamic applications like helicopter
rotors, turbomachinery, aircraft during maneuver and wind turbines. In oscillating wings, dynamic stall

can dramatically increase the aerodynamic loads and the stall angle encountered in steady state conditions.
The unsteady boundary layer separation and reattachment induced by the oscillation generates an asym-
metric flow during the cycle. This asymmetry is characterized by a hysteresis in the unsteady aerodynamic
loads. Helicopter rotors are severely affected by these unsteady loads. Consequently, optimal structural de-
signs require accurate unsteady flow solutions. However, current Reynolds Averaged Navier-Stokes (RANS)
methods can only predict cycle-averaged unsteady loads. This level of accuracy may be enough for a first
approximation. Nevertheless, Piziali1 stressed in his experimental investigation: “Cycle-averaged data may
or may not be representative of individual cycles. In many cases, the cycle-to-cycle variation can be signif-
icant.” Whereas, cycle-averaged data may be smooth, individual cycles may present important peaks and
deviation from mean values that cannot be ignored in the final design. Therefore, next generation turbulence
models must predict cycle-averaged experimental data only as an average of individual unsteady cycles.

Usually, when unsteady flow solutions are required, Large Eddy Simulation (LES) has been proposed to
replace RANS methods. Nevertheless, for aerodynamic flows of engineering application, LES still requires a
tremendous amount of computer resources, for examples, Mary and Sagaut2 simulated the 3D LES (attached)
flow over the Aerospatiale airfoil at Re = 2 × 106 and α = 13. This particular simulation required grids of
around 2.2 and 7.2 millions grid points. Mellen et al.3 reported the results of the joint European LESFOIL
project where LES simulations were conducted for the same Aerospatiale airfoil. Among their results, the
best predictions were achieved with grids around 18 millions grid points. Based on these experiences and the
current computational resources, LES is not yet feasible to be used on a regular basis to design industrial
aerodynamic flows.

The main limitation of LES in aerodynamic flows is that the walls have to be accurately resolved while
keeping reasonable grid cells aspect ratios. This constraint imposes a tremendous grid requirement, as
previously mentioned. In order to alleviate the LES near-wall resolution requriments, it has been proposed
to use RANS models in the near-wall region, whereas, away from it, LES closure is used. This approach
has been named hybrid RANS-LES methods. Different hybrid RANS-LES methods have been proposed.
As a first approximation, Speziale4 proposed to bridge RANS and LES methods by means of a reduction
in the RANS stress tensor (τ rans

ij ). The transition between RANS and LES is controlled by the grid size

(∆) and the Kolmogorov microscale (ηk): τij =
[
1 − e−β∆/ηk

]n
τ rans
ij , here β and n are model constants.

A second approach, that have become popular, is the Detached Eddy Simulation (DES) by Spalart et al.5

DES is a hybrid RANS-LES method based on the Spalart-Allmaras6 one equation model. Depending on the
grid geometry, DES switches from RANS near the wall to a pseudo Smagorinky LES closure away from it.
Unfortunately, the transition between RANS and LES is controlled by grid geometry and not by turbulence
quantities. More recently Xiao et al.7,8 developed a zonal hybrid RANS-LES approach. This zonal approach
uses a blending function to merge RANS and LES equations and may also depend on local flow properties,
besides wall distance and grid spacing.

In this investigation, we present an alternative way to pursue hybrid RANS-LES simulations. Here,
we propose a procedure that can be applied not only in the turbulence model equations but also in any
transport equation used in Computational Fluid Dynamics. Following this, we postulate the governing
equations required in hybrid RANS-LES simulations. Then the present methodology is applied to several high
Reynolds number airfoil/wing flows encountered in aerodynamic applications. In particular, the potential
of the present formulation is explored by simulating a 3D pitching wing case. To the present authors’ best
knowledge, this is the first hybrid RANS-LES simulation of a pitching wing in realistic flow conditions.

II. Hybrid RANS-LES (HRLES) Formulation

This section presents the governing equations for RANS and LES methods. The equations are cast in a
form that can be interpreted in either RANS or LES frame. Later on, the HRLES governing equations are
postulated, and finally, the RANS and LES model implementations are described.
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A. HRLES Governing Equations

To formulate the RANS and LES equations, the compressible Navier-Stokes equations have to be either
Favre averaged or Favre filtered (refer to Eqs. (1-2), for definitions). If no interpretation is given to the
Favre operator, the final equations can be written in a generic way, leaving the unclosed terms undefined
until the Favre operator is defined. Thus, Eqs. (3 to 5) represent the generic compressible mass, momentum
and energy conservation equations after Favre operation. Likewise, we can formulate a generic transport “k”
equation model that can be either RANS “k” or LES “ksgs” (Eq. (7)). The set of operators and equations
are presented bellow.

• Time average and space filter operators:

φrans = lim
T ′

→∞

1

T ′

∫ t+T ′

t

φdt, φsgs =

∫
φ(x− r, t)G(r, x)dr, (1)

• Favre average and filter operators:

φ̃rans =
limT ′

→∞

1

T ′

∫ t+T ′

t
ρφdt

limT ′
→∞

1

T ′

∫ T ′

0
ρdt

, φ̃sgs =

∫
ρ(x− r, t)φ(x− r, t)G(r, x)dr∫

ρ(x− r, t)G(r, x)
dr, (2)

• Generic compressible Navier-Stokes equations:

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ũj) = 0 (3)

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũj ũi) =

∂

∂xj
(−pδij + τ̃ji) +

∂

∂xj
(τ turb

ji ) (4)

∂

∂t
(ρ̄Ẽ) +

∂

∂xj
(ρ̄ũjẼ) =

∂

∂xj

[
ũi(τ̃ij − pδij) − q̃j

]
+

∂

∂xj
(Eturb

j ) (5)

Ẽ = ẽ+
1

2
ũiũi + krans/sgs, τ̃ij = µ̃(T̃ )

( ∂ũi

∂xj
+
∂ũj

∂xi
− 2

3

∂ũk

∂xk
δij

)
, qj = −Cpµ̃(T̃ )

Pr

∂T̃

∂xj
(6)

• Generic k equation turbulence model:

∂

∂t
(ρ̄k) +

∂

∂xj
(ρ̄ũjk) =

∂

∂xj
(Kturb

j trans) +Kturb
src (7)

Following the work of Baurle et al.,9 we can linearly merge any well established RANS and LES methods.
In addition, Speziale4 proposed the merging by reducing the Reynolds stress terms. Following these ideas,
the postulated generica HRLES governing equation, written in general form including convection, transport,
and source terms, is:

∂

∂t
(ρ̄φ̃) +

∂

∂xj
(ρ̄ũj φ̃) =

∂

∂xj
(φtrans

j ) + φ̃src

+
∂

∂xj
(Φhyb turb

j trans ) + Φhyb turb
src

(8)

RANS and LES are merged by a modification in the turbulent transport and source terms, Eq.(9). In general,
any transport equation used in CFD can be written as Eq.(8), extending the possible range of application
for HRLES. In particular for this study, the HRLES formulation include the Navier-Stoke equations and the
turbulence “k” equation, φ̃ = {1, ũi, Ẽ, k}. The fact that ω must satisfy free stream boundary conditions
without an equivalent LES equation precludes the inclusion of ω in the HRLES formulationb.

Φhyb turb
j trans = FΦrans

j trans + (1 − F )Φsgs
j trans, Φhyb turb

src = FΦrans
src + (1 − F )Φsgs

src , (9)

aIn order to write any transport equation used in CFD, the corresponding source (if any) and transport terms must be
included.

bThe RANS ω equation is not blended.
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B. RANS and LES Model Equations

Based on previous studies in dynamic stall (for example, see Srinivasan et all,10 Ekaterinaris and Menter,11

Ko and McCroskey,12 Ekaterinairs13,14 and Spentzos et al15), we selected the RANS k−ω SST by Menter,16

due to its superiority over other RANS methods. For the LES part, we will use the compressible version
of the localized dynamic ksgs one-equation model (LDKM) of Kim and Menon.17 This method has been
applied successfully in different applications, as shown in Menon et al.,18 Kim et al.,19 Kim and Menon.17,20

For the sake of completeness, we present the equations for the RANS and LES model.

1. RANS SST two-equation model

∂

∂t
(ρ̄k) +

∂

∂xj
(ρ̄ũjk) =τ rans

ij

∂ũi

∂xj
− β∗ρωk +

∂

∂xj

[
(µ̃+ σkµT )

∂k

∂xj

]
(10)

∂

∂t
(ρ̄ω) +

∂

∂xj
(ρ̄ũjω) =

γρ

µT
τ rans
ij

∂ũi

∂xj
− βρω2 +

∂

∂xj

[
(µ̃+ σωµT )

∂ω

∂xj

]

+ 2(1 − F2)ρσω2

1

ω

∂k

∂xj

∂ω

∂xj

(11)

The model constants (here represented as ψ) are computed from two set of constants (ψ1 and ψ2) as follows:

ψ = F2ψ1 + (1 − F2)ψ2 (12)

Set of constants ψ1:

σk1 = 0.85, σω1 = 0.5, β1 = 0.075, a1 = 0.31,

β∗ = 0.09, κ = 0.41, γ1 =
β1

β∗
− σω1κ

2

√
β∗

(13)

Set of constants ψ2:

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828,

β∗ = 0.09, κ = 0.41, γ2 =
β2

β∗
− σω2κ

2

√
β∗

(14)

µT =
a1ρ̄k

max(a1ω; ΩF2)
, F2 = tanh(x2), x = max

(
2

√
k

0.09ωy
;
500ν

y2ω

)
, (15)

τ rans
ij = µT

( ∂ũi

∂xj
+
∂ũj

∂xi
− 2

3

∂ũk

∂xk
δij

)
− 2

3
ρ̄kδij (16)

Here, Ω is the magnitude of the vorticity vector, ν is the kinematic viscosity, and y is the wall normal distance.
In the original paper by Menter,16 the constants are blended with a function of the form F1 = tanh(x4).
We decide to use F2 to blend the constants, because F2 yields a smoother transition between RANS and
LES. To evaluate the effect of this modification in the RANS model, we performed RANS simulations (not
presented) of the flow around an airfoil at an angle of attack of 13o. The results did not show any significant
differences.

2. LES ksgs one-equation model

∂

∂t
(ρ̄ksgs) +

∂

∂xj
(ρ̄ũjk

sgs) =
∂

∂xj

[( µ̃

P r
+
µsgs

Prt

) ∂k
∂xj

]
+ τ sgs

ij

∂ũi

∂xj
− Cερ

(ksgs)3/2

∆
(17)

µsgs = ρCν∆
√
ksgs, Cν = 0.0667, Cε = 0.916, P r = 0.72,

P rT = 0.9, ∆ = (∆x∆y∆z)1/3, ∆̂ = 2∆
(18)
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For 3D flows, a dynamic approach is implemented to obtain appropriate values for the coefficients Cν and
Cε. Here, it is assumed that the subgrid stress tensor and the subgrid scale dissipation satisfy the similarity
assumption in both grid and test filters (Menon18). Equations (19-20) define the subgrid stress tensor and
subgrid energy dissipation with their respective closure form:

−τsgs
ij = ρ̄

(
ũiuj − ũiũj

)
= −2

Cν∆

ρ

(1

2
ũiui −

1

2
ũiũi

)1/2(
S̃ij −

1

3
S̃kkδij

)
+

2

3
ρ̄
(1

2
ũiui −

1

2
ũiũi

)
δij (19)

Diss =
˜
τij

∂ui

∂xj
− τ̃ij

∂ũi

∂xj
= ρCε

(
1

2
ũiui − 1

2
ũiũi

)3/2

∆
(20)

where, S̃ij = 1

2

(
∂eui

∂xj
+

∂euj

∂xi

)
. If the similarity assumption holds, direct evaluation of equations (19-20)

is possible in a coarser grid by means of a test filter G′(r, x). Consequently, it is possible to calculate
appropriate coefficients for the LES closure models with Eqs. (21-23). More details of LDKM have been
reported elsewhere.20

Cν = − LijDij

2DijDij
(21)

Lij = ̂̄ρ
( ̂̃uiũj − ̂̃ui

̂̃uj

)
−

̂̄ρ
3

( ̂̃uiũi − ̂̃ui
̂̃ui

)
δij ,

Dij = −∆̂̂̄ρ
(1

2
̂̃uiũi −

1

2
̂̃ui

̂̃ui

)1/2(̂̃
Sij −

1

3
̂̃
Skkδij

) (22)

Cε = 2∆̂(˜̂µ+ µT )

[
(S̃ij − 1

3
S̃kkδij)

∂eui

∂xj
− (

̂̃
Sij − 1

3

̂̃
Skkδij)

∂beui

∂xj

]

ρ̂
(

1

2
̂̃uiũi − 1

2
̂̃ui

̂̃ui

)2/3
(23)

̂̃
φsgs =

∫
ρ(x− r, t)φ̃(x− r, t)G′(r, x)dr∫

ρ(x− r, t)G′(r, x)
dr (24)

C. HRLES Closures Terms

To finalize the HRLES formulation, Eq.(8), the turbulence transport and source terms in Eq. (9) must be
defined. Here, only the momentum, total energy and “k” equation are considered. For the sake of simplicity,
only the closure terms are included. The original unclosed terms can be found elsewhere.21

• Momentum closure:

τ rans
ij = µT

( ∂ũi

∂xj
+
∂ũj

∂xi
− 2

3

∂ũk

∂xk
δij

)
− 2

3
ρkδij ,

τsgs
ij = µsgs

( ∂ũi

∂xj
+
∂ũj

∂xi
− 2

3

∂ũk

∂xk
δij

)
− 2

3
ρksgsδij

(25)

• Total energy closure:

Erans
j = (µ̃+ σkµT )

∂k

∂xj
+
CpµT

PrT

∂T̃

∂xj
+ ũiτ

rans
ij ,

Esgs
j =

µsgs

PrT

∂Ẽ

∂xj
+

µsgs

ρPrT

∂p

∂xj
+
Cpµsgs

PrT

∂T̃

∂xj
+ ũiτ

sgs
ij

(26)

• Turbulence “k” equation closure:

Krans
j trans = (µ̃+ σkµT )

∂k

∂xj
, Ksgs

j trans = (
µ̃

P r
+
µsgs

PrT
)
∂ksgs

∂xj
,

Krans
src = τ rans

ij

∂ũi

∂xj
− β∗ρkω, Ksgs

src = τsgs
ij

∂ũi

∂xj
− Cερ

(ksgs)3/2

∆

(27)
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III. Numerical Method

The HRLES compressible Navier-Stokes equations (Eqs. (8-9)) are solved using a finite volume approach.
Time integration is performed with a five stage Runge-Kutta dual time stepping scheme.22 Convective
fluxes are discretized with a second-order central scheme with numerical dissipation23 to prevent spurious
oscillations. Although high-order central schemes are desired for LES, it is not always easy to adapt those
schemes on complex geometries. In fact, most of the previous LES simulations in airfoils have been obtained
by second-order central schemes (see, for example, Refs. 2, 3, 24).

Boundary conditions are implemented explicitly. On the solid surface, the velocity is either zero for
the static case or equal to the wing velocity for the unsteady motion. The wall is assumed adiabatic for
the unsteady and static cases. Pressure and density are computed from interior points with first order
extrapolation. For the unsteady motion, pressure is computed solving the normal momentum equation at
the surface:

∂p

∂n
= −ρn̂ · a (28)

where n̂ is the unit normal vector to the surface and a is the acceleration vector of the airfoil. Farfield
boundary conditions are implemented by solving one-dimensional Riemann invariants. Periodic boundary
conditions are applied for the boundaries in the spanwise direction. For the turbulence variables, the following
holds: The modeled kinetic energy k is set to zero at the surface and to k∞ = (0.016U∞)2 at the farfield.
The specific dissipation rate (ω) is computed at the farfield from the scaling proposed in Ref. 25. At the
wall, ω has an analytic solution described in Ref. 26. Nevertheless, for the current simulation, this solution
is only imposed at the first finite volume cell neighboring the wall. These boundary conditions are:

ω∞ = ϑ
(
10
U∞

C

)
, ω =

6ν

β1y2
1

for y+
1 < 2.5 (29)

Here, C is the chord of the airfoil, ν kinematic viscosity, y1 is the wall normal distance to the first finite

volume cell center next to the wall, y+
1 = y1

ν

√
τw

ρ , and τw is the shear stress at the wall.

IV. Results and Discussion

The principal objective of the present investigation is to assess the capability of HRLES as a reliable
tool to predict complex aerodynamic flows. To this end, the flow over static and oscillating airfoil were
selected given the challenges that these flows pose to current turbulence models. The tripped boundary
layer experimental data of Ref. 1 is used to compare the numerical calculations.

A. Experimental Description

The cases considered include the flow over a static and oscillating airfoil NACA 0015, at a Reynolds number
based on the chord length Re = 1.95 × 106 and Mach number M = 0.29. For the static case, angles of
attack in the linear and stall regime were considered. For the oscillating airfoil, the angle of attack changes
sinusoidally as α = α0 + αa sin(2U∞κ

C t). Here, α0 is the mean angle of attack, αa is the amplitude of pitch,
and κ is the reduced frequency. Three cases were selected: attached flow (α0 = 4o, αa = 4.2o, κ = 0.1),
light stall (α0 = 10.88o, αa = 4.22o, κ = 0.1), and deep stall (α0 = 13.03o, αa = 5.25o, κ = 0.1). For further
details about the experimental setup, refer to the original report in Ref. 1.

B. Numerical Configuration

Three-dimensional computation have been conducted on a C grid with 541 × 97 × 21 grid points in the
streamwise, wall normal, and spanwise directions, respectively. The wall normal and spanwise resolution are
y/C = 1.0 × 10−5 and z/C = 0.002 which provide an approximate resolutions in wall units of ∆y+ ≈ 2.0
in the normal and ∆z+ ≈ 200 in the spanwise direction. For the 2D simulations, the same grid was
implemented but with just one plane in the spanwise direction. Outer boundaries are set at approximately
8 chord distances.
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C. Static 2D Simulations

The fact that a good turbulence model should provide accurate solutions at a minimum cost usually requires
simplifications on the original problem. If three-dimensional effects can be neglected, 2D HRLES simulations
can be performed without compromising the fidelity or physics of the results.

1. Attached flow regime

In a static semi-infinite wing, the attached flow is fundamentally two-dimensional. Therefore, 2D simulations
can be performed to save computer time without loosing much information. Figure 1 presents the steady
state aerodynamic coefficients at different angles of attack, including stall. For angles of attack before
stall (α < 14o), 2D solutions reproduce loads in excellent agreement with experimental measurements. In
the experiments, the aerodynamic coefficients were computed from pressure distributions only. The fact
that the integrated aerodynamic coefficients match experiments does not always ensure an agreement in
pressure distribution. Figure 2(a) presents Cp distribution extracted from 2D simulation at the onset of stall
(α = 13o). The excellent agreement of the loads is determined by a corresponding accurate prediction in the
pressure distribution. Therefore, for two-dimensional attached aerodynamic flows, 2D simulations suffice to
reproduce results in agreement with experiments.

2. Stalled flow regime

For angles of attack in the stalled regime (α > 14o), flow separation is expected and turbulence structures
cannot be accurately resolved by 2D HRLES simulations. Full 3D solution is needed, and its results are
shown in Fig. 1 but also discussed further in the next section. In Fig. 1, 2D simulations overpredict the
aerodynamic loads at high angles of attack due to unphysical prediction of flow separation. To illustrate this
fact, Fig. 2(c) presents time averaged streamlines at α = 18o. In general, the flow develops a larger clockwise
recirculation region than its 3D counterpart shown in Fig. 3(b). This larger separation is the cause of the
overshoot in the drag and moment coefficients of 2D simulations. The strong separation can be explained
by analyzing both streamlines patterns. In the 2D case, the lack of a third dimension generates a strong
trailing edge vortex. This vortex pushes upstream the recirculation zone, increasing the separated region.
For the 3D solution, this vortex is not as strong as its 2D counterpart is. Therefore, the recirculation region
is smaller, and the location of the vortex is at the end of the trailing edge.

D. Static 3D Simulations

The stalled flow over a wing at angles of attack of α = 17o and 18o were simulated solving the full 3D
equations. The aerodynamic coefficients were found in good agreement with experiments as shown in Fig. 1.
However, the lift coefficient experienced a small over prediction caused by an approximate 30% overshoot
of the mean Cp in the suction zone (Fig. 2(b)). This overshoot may be caused by the small wingspan
simulated here. Nevertheless, away from this small zone, the pressure distribution is in good agreement with
experiments. The recirculation zone, identified by the region of constant Cp in the suction side, is resolved
correctly, it covers the approximate range of x/C = 0.3−1.0, for α = 17o. Drag and moment coefficients are
not severely affected by the overshoot in Cp on the suction zone. In fact, the accuracy in drag prediction
depends on an accurate match of the recirculation zone c.

Unsteady flow features at α = 18o are presented in Figure 3. Instantaneous streamlines shown in
Fig. 3(a) reveal the complex flow structures encountered in the stalled wake. This wake consists of two
principal structures. At the leading edge, after the flow separates a shear layer of high vorticity, reminiscent
of a Kelvin-Helmholtz instability, develops covering a region of approximately half chord before it starts
periodic vortex shedding. At the trailing edge a vortex periodically develops and convects downstream.
The fact that the flow is asymmetric ensures that the natural frequencies of these structures are not in
phase. Contrary to the harmonic vortex shedding in a cylinder, for the stalled airfoil the clockwise leading
edge vortex directly interacts with the anticlockwise trailing edge vortex. This complex vortex dynamics
breaks large-scale vorticity into small eddies, continuously developing new turbulence scales that sustain the
turbulence levels in the flow.

cThis is only valid for loads computed directly from pressure distribution.
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Figure 3(c) presents contours of instantaneous vorticity. Here, it is evident that the small eddies are
mainly localized near the trailing edge zone. These eddies are generated by the interaction of the leading
and trailing edge vortices (also visualized in the figure). Therefore, in this region, we expect the highest
levels of turbulence intensities.

Here, we demonstrate that these unsteady flow features are captured by the LES part of the HRLES
model. Contours of instantaneous values of the blending function (Eq. 15), are presented in Fig. 3(d). It
is evident that in the leeward side of the airfoil, where unsteady flow features are observed, transition from
RANS to LES occurs faster than in the windward side, where a slower transition is reproduced, mainly by
the absence of enough flow unsteadiness. The fast leeward RANS to LES transition is caused by the change
in the definition of the “k” in Eq. (15). In the original RANS-SST, “k” represents the complete turbulent
kinetic energy. However, “ksgs” represents only a small fraction of this energy in LES. Therefore, in HRLES
the transition function switches faster than it would normally do in a standard RANS simulation.

Spectral analysis are performed on time sampled data of velocity components. Data were collected at two
locations as summarized in Table 1 and Fig 4. These locations were selected to capture the vortex structures
in the trailing and leading edge, after analyzing the flow evolution. For α = 18o, the trailing edge vortex
shedding frequency is computed from the vorticity spectrum and shown in Fig 5(a). A primary frequency
of 321 Hz with a Strouhal number of St = fC/U∞ = 0.96 is identified. Additionally, a second frequency
at around half the value of the primary frequency and a third frequency at exactly twice the value of the
primary frequency are also observed. In Ref. 3, frequencies corresponding to St ∼ 1.3 were reported for
α = 13o.

Figure 5(b) presents the energy spectrum of the turbulence. Here, it is observed that most of the energy
is contained between 101.5 Hz and 321.3 Hz. From Fig. 5(a) these frequencies are identified as the vortex
shedding frequencies. Therefore, vortex shedding is recognized as the principal large-scale mechanism feeding
energy into viscous dissipation. In addition, an inertial range following Kolmolgorov27 scaling is reproduced.
Finally, Fig. 6 presents the contours of the resolved Reynolds stresses for α = 18o. The shear layer and
trailing edge zones show higher levels of < u′u′ > (Fig. 6(a)). However, only at the trailing edge < v′v′ > is
found in reasonable levels (Fig. 6(b)). From Figs. 5(b) and 6(d), it is evident that the trailing edge region
produces the highest turbulence activity in the flow.

Table 1. Probe locations.

Location x/C y∗/C z/C

1 1.0 6.0×10−2 0.02

2 0.3 3.0×10−2 0.02

* Distance measured from the airfoil sur-
face.

E. Oscillating Flow 2D and 3D Simulations

For all the cases simulated, the same reduced frequency of κ = 0.1 is used. The flow is initialized from a
steady state solution at the lowest angle of attack, the first transitory cycle is eliminated, and an approximate
time step of ∆t ≈ 4.0 × 10−6s is used to advance the solution.

1. Attached flow (2D)

The pitching case of α = 4o + 4.2o sin(ωt) results in attached flow. Even though separation is absent in
this configuration, the growth of the boundary layer imposes enough complexity for the turbulence model.
Figure 7 shows the unsteady loads in this case. CD shows a small underprediction during the cycle, whereas,
CL only underpredicts the experiment at the top of the upstroke. CM shows good agreement in the down-
stroke, and a small over prediction at the upstroke. In general, the three aerodynamic coefficients are in
good agreement with experimental data. Only three cycles were simulated since the third cycle was found
to be identical to the second cycle.
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2. Light stall (2D)

For this case, the angle of attack is α = 10.88o + 4.22o sin(ωt). In the experiments, only a small region
of separation occurs at the end of the upstroke. Therefore, 2D simulations may still provide reasonable
solutions. Figure 8 shows the aerodynamic loads for each cycle and their cycle average. Here, six cycles were
simulated and cycle-to-cycle variations were observed. The flow exhibits a small trailing edge separation
and vortex shedding. It starts at the end of the upstroke and persists up to halfway of the downstroke. Lift
coefficient recovers faster during the downstroke, and higher CL levels are seen in Fig. 8(a). This higher
recovery is also found in previous RANS-SST simulations (see Ref. 11). Drag coefficient shown in Fig. 8(b)
is found in fair agreement with the experiment. The upstroke is well predicted until the onset of stall, where
suddenly the CD increases. During the first part of the downstroke, the drag induced by the separation is
well captured. However, a faster recovery in the drag is experienced when the flow reattaches. The pitching
moment coefficient shown in Fig. 8(c) exhibits high frequency oscillations caused by vortex shedding in the
downstroke for 15.1o > α > 11o. Similar behavior is also apparent for CL and CD, although to a smaller
extent. It is evident that the separation affects CM down to approximately α ≈ 11o in the downstroke at
which time the flow completely reattaches. In addition, CM cycles exhibit a loop crossing, like those found
in cases with higher amplitude of pitch, mainly during the end of the upstroke and the beginning of the
downstroke. The rest of the cycle in Fig. 8 shows faster recovery in the loads (compared with experiments),
as also reported in other studies (Ref. 11). It appears that for the attached and light stall cases, RANS-
SST model dominates a majority of the HRLES solution. In addition, it is observed that the excessive
2D separation will induce apparent higher amplitude of pitch responsible of the loop crossing shown in the
computed moment coefficient.

F. Oscillating Wing 3D Simulations

It was shown in Fig. 1 that three-dimensional effects cannot be neglected when flow separation is encountered.
Therefore, even for light stall cases 3D simulations are required for accurate predictions. Here, a more
challenging, fully stalled case with α = 13.03o +5.25o sin(ωt) is simulated in 3D. In addition, 2D simulations
were conducted for comparison purposes.

1. Deep stall results (2D)

Figure 10 presents the aerodynamic loads for the deep stall case. Each cycle (after the first cycle) as well as
the cycle average are presented. The cycle average was computed from nine cycles, all of them were found
to have unique cycle-to-cycle variation in the solution. This number of cycles may not be enough to get a
smooth converged mean cycle, since in the experiments of Ref. 1, over twenty cycles were required to get a
converged mean. Nevertheless, the current mean results help to exemplify the possible problems encountered
when unsteady HRLES or LES solutions of dynamic stall have to be compared against classic cycle-averaged
experimental datad. Therefore, we limit ourselves to describe only the characteristics of individual cycles.

During the upstroke, the three coefficients showed very good agreement with experimental data. Here,
the characteristic delay in stall is well captured. However, at the end of the upstroke and during most of the
downstroke, excessive unphysical 2D separation induces an overshoot in the loads. This is characterized by
high frequency, high amplitude oscillation. In the light stall case, vortex shedding at the trailing edge caused
a high frequency, small amplitude oscillation in the loads. Nonetheless, for the deep stall case, vorticity is
shed from the leading and trailing edge. The strong oscillations encountered in the loads are produced by a
complex interaction between the leading edge vortex or “dynamic stall vortex” and the trailing edge vortex.
Because the flow is 2D, these vortices are too strong with low-pressure cores. Therefore, they continuously
change the pressure distribution of the airfoil on its way through the wake. Figure 9 presents snapshots of the
evolution of one cycle. Contours of vorticity magnitude are used to demonstrate the complex structure of this
flow. During the upstroke, the unsteady effects keep the flow attached well above the steady state stall limit
(α > 14o), and even at α = 18o the stall is still light when compared with the static case. Additionally, a
clockwise leading edge vortex is formed (dynamic stall vortex) and this vortex is responsible for the dramatic
increase in lift. Once the airfoil starts the downstroke motion, the dynamic stall vortex separates from the
leading edge convecting through the wake. At the same time, a counterclockwise vortex is generated at the
trailing edge. Both vortices usually are not in phase. Thus, a complex vortex dynamics occurs when both

dUsually, experiments in dynamic stall mainly report the aerodynamic loads as cycle-averaged data.
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vortices, of opposite signs, collide in the leeward side of the airfoil. This complex interaction is responsible
for the oscillations in the loads. On an average, the flow reattaches around α = 12o, and the cycle starts
over again.

2. Deep stall results (3D)

Given current limitations in computational resources, only one cycle has been simulated so far (simulations
will be continued in the future). For this case computations were initiated from the steady state solution at
α = 18o and the initial transient is eliminated by the time the airfoil reaches the bottom of the downstroke.
Figure 11 presents the unsteady aerodynamic loads for the 3D simulation (2D results are also included as a
reference). It is evident that the effect of the third dimension is to reduce the intensity of separation. The
frequency and amplitude of the oscillations in the loads is dramatically reduced when compared with 2D
results. During the upstroke, lift, drag, and pitching moment coefficients show very good agreement with the
experiments. Contrary to the 2D solution, the 3D simulation correctly predicts the load at the end of the
upstroke where an overshoot is present in the 2D result. Similar to the 2D case, a dynamic stall and a trailing
edge vortex form during the downstroke. However, these vortices are not as strong as their 2D counterpart.
Therefore, the fluctuations in the loads are not very intense. Nevertheless, in the range α ≈ 17o → 15o the
loads present an over-prediction. However, in the original experimental report (Ref. 1) individual cycles for
a similar case presented important overshoots of the loads, when compared with mean values. As explained
before, the complex interaction between these two vortices is responsible for the oscillation in the loads.
The current 3D simulation correctly predicts the angle at which the drag and the pitching moment loops
crosses (α ≈ 14o). Additionally, 3D loop is closer to the experimental data than the mean 2D loop. Based
on these results, we believe that if enough 3D cycles are simulated, the mean loop would be closer to the
experiments. Figures 12 and 13 present snapshots of the time evolution of the cycle, in terms of contours
of vorticity magnitude (shown at the same level as in Fig. 10) and vorticity magnitude isosurfaces. Even
though, Figs. 10 and 12 give the impression of similar flow dynamics, it is clear from Fig. 13 that this is not
the case. During the upstroke, at the onset of stall, a two-dimensional wake develops as shown in Fig. 14(a).
This 2D wake is unstable and spanwise instabilities trigger transition from 2D to 3D flow (Fig. 14(b)). From
Figs. 14(c)- 14(e) it can be identified that vortex shedding induces an enlargement and division of the vortex
structures. This mechanism, known as vortex stretching, redistributes vorticity in the three directions and
enhance turbulence generation. The absence of vortex stretching in 2D prevents the 3D redistribution of
vorticity, yielding unphysical levels of vorticity in the spanwise direction. Additionally, turbulence cannot
be physically generated without vortex stretching. Finally, at the end of the downstroke the flow reattaches,
recovering a 2D structure (Fig. 14(d)).

Power density spectra of the aerodynamic loads, vorticity magnitude and TKE are computed at locations
1 and 2. Figure 15(a) shows the power density spectra of the normalized vorticity magnitude and the
aerodynamic coefficients. Vorticity magnitude is collected at location 2, where it is expected that the dynamic
stall vortex would be located. It is clear that the spectrum of vorticity at this location is in agreement with
the spectra of the aerodynamic loads. Figure 15(c) present the same spectra but at location 1. Here, the
vorticity spectrum does not match the spectra of the aerodynamic loads. Additionally, Fig. 15(b) shows the
time signal of drag coefficient and vorticity magnitude at location 1 and 2 during the downstroke. It can be
observed, that the leading edge vortex signal shows a better phase agreement with the drag coefficient than
the trailing edge vortex signal. These observations give the impression that the spectral characteristics of
the aerodynamic coefficients are highly determined by the dynamic stall vortex. These would suggest that
the leading edge must be as well resolved as the trailing edge in order to correctly predict the unsteady
aerodynamic loads. Finally, Fig. 15(d) presents turbulence kinetic energy spectrum computed at location 1.
Two principal frequencies containing most of the energy (140 Hz and 260 Hz) are identified. This spectrum
presents an inertial range in agreement with Kolmolgorov’s27 scaling laws, indicating that the flow solution
presents a distribution of energy in agreement with real turbulent flows. Previous RANS simulations for the
same deep stall case (Ref. 28) have demonstrated that current RANS models still require more development
to accurately simulate this flow. Consequently, HRLES emerges as a new and interesting alternative for
dynamic stall simulations.
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V. Conclusion

The performance of a new hybrid RANS-LES method is evaluated in flows of interest in aerodynamic
designs. Two-dimensional and three-dimensional simulations for static and oscillating wings are carried out.
Current results demonstrate that HRLES methods can provide accurate unsteady flow solutions, without
the prohibitively high grid resolution required by LES. It is demonstrated that for flows that are inherently
two-dimensional, and without flow separation, 2D HRLES simulation provides accurate solutions. However,
when separation is present, only a three-dimensional simulation did yield solutions in agreement with ex-
perimental results. Additionally, proper domain dimensions have to be used to avoid additional separation
caused by domain restriction. Here, it is suspected that the wingspan simulated is not big enough and is
promoting additional (and unphysical) separation. This could explain the slight overshoot in the aerody-
namic loads for the 3D deep stall case. These issues have to be explored further in future studies. It is very
unlikely that standard LES models will be used in the near future as a design tool for complex industrial
applied aerodynamic flows. Therefore, hybrid methods emerge as an interesting alternative for aerodynamic
flows at high Reynolds number. Finally, future experimental measurements should provide unsteady flow
characteristics in addition to typical mean values, to fully validate future unsteady simulations in dynamic
stall.
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(b) Static drag coefficient.
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(c) Static moment coefficient.

Figure 1. Static lift, drag and moment coefficient for

NACA 0015.
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(a) Angle of attack α = 13o, 2D simulation.
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(b) Angle of attack α = 17o, 3D simulation.

(c) Time average streamlines α = 18o, 2D simulation.

Figure 2. Pressure coefficient and time averaged

streamlines for NACA 0015.
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(a) Static wing instantaneous stream lines. (b) Static wing mean stream lines.
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(c) Static wing instantaneous vorticity magnitude contours.
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Figure 4. Probes locations for NACA 0015.
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Figure 5. Power density spectrum of vorticity and turbulent kinetic energy at location 1. Static wing NACA

0015.

(a) Static wing α = 18o, Reynolds stress < u′u′ >. (b) Static wing α = 18o, Reynolds stress < v′v′ >.

(c) Static wing α = 18o, Reynolds stress < u′v′ >. (d) Static wing α = 18o, TKE < u′
iu

′
i > /2.

Figure 6. Contours of resolved Reynolds stresses and turbulent kinetic energy. Static wing NACA 0015.
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(a) Unsteady lift coefficient in oscillating motion.
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(b) Unsteady drag coefficient in oscillating motion.
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Figure 8. Hysteresis of unsteady loads for light dy-
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C

),

k = 0.1, M∞ = 0.29, Re = 1.95 × 106, 2D results.
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(a) Unsteady lift coefficient in oscillating motion.
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(b) Unsteady drag coefficient in oscillating motion.
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Figure 9. Hysteresis of unsteady loads for deep dy-

namic stall. NACA 0015, α = 13.03 + 5.25 sin( 2kU∞t
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),

k = 0.1, M∞ = 0.29, Re = 1.95 × 106, 2D results.
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(a) Unsteady lift coefficient in oscillating motion.
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(b) Unsteady drag coefficient in oscillating motion.
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(c) Unsteady moment coefficient in oscillating motion.

Figure 11. Hysteresis of unsteady loads for deep dy-

namic stall. NACA 0015, α = 13.03 + 5.25 sin( 2kU∞t
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k = 0.1, M∞ = 0.29, Re = 1.95 × 106, 2D and 3D results.
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Figure 13. One cycle instantaneous snapshots. Isometric view of vorticity isosurfaces deep stall case. NACA

0015, α = 13.03 + 5.25 sin( 2kU∞t
C

), M∞ = 0.29, Re = 1.95 × 106, 3D results.
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(a) Two dimensional wake during upstroke. (b) Three dimensional instabilities in wake and trailing edge, up-
stroke.

(c) Three dimensional instabilities in leading edge vorticity and
3D structures in wake and trailing edge, downstroke.

(d) Leading edge vortex shedding, downstroke.

(e) Vortex shedding and vortex stretching during reattachments,
downstroke.

(f) Two dimensional flow, the wake still shows 3D instabilities.

Figure 14. Selected isometric view of vorticity isosurfaces deep stall case. NACA 0015, α = 13.03 +
5.25 sin( 2kU∞t

C
), M∞ = 0.29, Re = 1.95 × 106, 3D results.
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(a) Power density spectra of aerodynamic loads and vorticity
magnitude at location 2.
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(b) Time signal of drag coefficient and vorticity magnitude at
locations 1 and 2.
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(c) Power density spectra of aerodynamic loads and vorticity
magnitude at location 1.
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(d) Turbulent kinetic energy spectrum at location 1.

Figure 15. Power density spectrum of aerodynamic loads, vorticity magnitude and TKE. NACA 0015, α =
13.03 + 5.25 sin( 2kU∞t

C
), k = 0.1, M∞ = 0.29, Re = 1.95 × 106, 3D results.
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