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Two level simulation (TLS) is a novel approach, which is based on the decomposition
of velocity into large-scale and small-scale components, has been applied to simulate near-
wall and isotropic turbulence. A coupled system of equations that is not based on an eddy-
viscosity type of assumption uses an explicit reconstruction of the small-scale velocity field.
The small-scale equations are modeled on a family of three one-dimensional, orthogonal
lines that are embedded inside the three-dimensional large-scale grid. Results suggest that
the baseline TLS approach can capture important features of high-Re turbulent flows using
relatively coarse grids.

I. Introduction

Direct numerical simulation (DNS) of high Reynolds (Re) number wall-bounded flows is computationally
very expensive because of the resolution requirement in the near-wall region. Even with the advent of
massively parallel supercomputers, DNS is still limited to low-Re number flows1 (Reτ = 590). Recently,
large eddy simulation (LES) has become a viable method to study high-Re complex flows. However, past
LES of high-Re wall-bounded flows have not proven successful in capturing the near-wall dynamics, which
is dominated by quasi-streamwise vortices, unless DNS like resolution is employed near the wall. This has
led to methods in which only the outer layer is computed while the near-wall region is modeled. Many near-
wall subgrid models have been proposed,2 but so far such models have shown a relatively limited success.
A fundamental limitation is that most models employ empirical arguments about small-scale isotropy and
requires the introduction of arbitrary model parameters. However, the near-wall region is strongly anisotropic
and to resolve it near-DNS resolution has been required. This resolution need is prohibitive for high-Re flows
and thus, new methods are needed that are not dependent on DNS resolution near the wall.

The present approach, called two level simulation (TLS), departs significantly from LES and is similar
to several alternative approaches (referred loosely here as “decomposition” approaches) that have emerged
in literature recently. In contrast to LES, where decomposition is introduced through spatial filtering and
the major effort is concentrated on the subgrid-scale stress (SGS) modeling, in “decomposition” approaches
considerable attention is devoted to modeling of small-scale velocity itself. This usually involves a derivation
of the governing equation for small-scale velocity with its subsequent simplification based on some physical
arguments.3, 4 In TLS, the small-scale velocity field is explicitly reconstructed by solving approximate small-
scale equations on a family of 1D grid lines embedded inside the 3D resolved grid. The 3D small-scale velocity
field constructed from these 1D lines serves as a closure for the 3D large-scale equations. The reduction in
dimensionality for the small-scale equations allows the coupled TLS approach to be computationally feasible
(on massively parallel machines). In this paper, we first highlight the derivation of the governing equations
for large and small scales, then we discuss application of the TLS approach to the turbulent channel flow
and isotropic turbulence.
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II. Mathematical Formulation

We split velocity and pressure fields into large-scale (LS, superscript L) and small-scale (SS, superscript
S) components:

ui(x̄, t) = uL
i (x̄, t) + uS

i (x̄, t), p(x̄, t) = pL(x̄, t) + pS(x̄, t) (1)

and substitute into the incompressible Navier-Stokes equations to obtain the baseline TLS equations:

∂

∂t
(uL

i + uS
i ) +

∂

∂xj
(uL

i + uS
i )(uL

j + uS
j ) = − ∂

∂xi
(pL + pS) + ν

∂2

∂x2
j

(uL
i + uS

i ) (2)

∂

∂xi
(uL

i + uS
i ) = 0 (3)

If the SS fields (uS
i , pS) are known, the LS fields (uL

i , pL) can be determined by integrating Eqs. (2, 3).
The LS velocity represents not only the filtered quantity with respect to some spatial filter (as in LES) but
also any LS velocity that can be defined based on its values at the LS grid points. Once the LS quantity is
defined any SS quantity is defined based on decomposition similar to Eq. (1). Rearranging Eq. (2) results
in the coupled LS and SS equations:

∂uL
i

∂t
+

∂

∂xj
(uL

i + uS
i )(uL

j + uS
j ) = −∂pL

∂xi
+ ν

∂2uL
i

∂x2
j

+ F S
i (uS

i , pS) (4)

∂uS
i

∂t
+

∂

∂xj
(uL

i + uS
i )(uL

j + uS
j ) = −∂pS

∂xi
+ ν

∂2uS
i

∂x2
j

+ F L
i (uL

i , pL) (5)

The LS and SS velocities affect each other through the forcing terms F S
i , F L

i :

F L
i (uL

i , pL) = −∂uL
i

∂t
− ∂pL

∂xi
+ ν

∂2uL
i

∂x2
j

(6)

F S
i (uS

i , pS) = −∂uS
i

∂t
− ∂pS

∂xi
+ ν

∂2uS
i

∂x2
j

(7)

Note that all Eqs. (2, 4-5) are different forms of the full Navier-Stokes equations written for different
unknown velocities, and most importantly, they do not involve any type of LES spatial filtering. Thus, the
TLS formulation is inherently free from problems associated with filtering such as commutativity between
filtering and differentiation, which is an issue in LES formalism near boundaries and on non-uniform grids.5

The last two forms of the TLS equations can be re-written in different equivalent form to highlight their
connection to LES equations. Similar to velocity and pressure any quantity can be decomposed into large-
scale and small-scale components. Splitting the non-linear term on the left hand side of the equations (4,5)
into large and small-scale components produces the following set of the LS and SS equations:

∂uL
i

∂t
+

[ ∂

∂xj
(uL

i + uS
i )(uL

j + uS
j )

]L

= −∂pL

∂xi
+ ν

∂2uL
i

∂x2
j
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i (uL

i , uS
i , pS) (8)

∂uS
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∂t
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∂xj
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i + uS
i )(uL
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= −∂pS

∂xi
+ ν

∂2uS
i

∂x2
j

+ GL
i (uL

i , uS
i , pL) (9)

Now the large and small-scale forcing terms GS
i , GL

i on the right hand side of the equations are given by:

GL
i (uL

i , uS
i , pL) = F L

i (uL
i , pL)−

[ ∂

∂xj
(uL

i + uS
i )(uL

j + uS
j )

]L

(10)

GS
i (uL

i , uS
i , pS) = F S

i (uS
i , pS)−

[ ∂

∂xj
(uL

i + uS
i )(uL

j + uS
j )

]S

(11)

and both Eqs. (8, 9) are equivalent to the original Navier-Stokes equations (2) written as:

GL
i (uL

i , uS
i , pL) + GS

i (uL
i , uS

i , pS) = 0 (12)
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In particular, this equation holds when each large-scale and small-scale parts are equal to zero simultaneously:

GL
i (uL

i , uS
i , pL) = 0, GS

i (uL
i , uS

i , pS) = 0 (13)

It is clear, from Eqs. (8, 9), that the former equation recover LES equation for (uL
i , pL) and the latter is, in

fact, the small-scale equation for (uS
i , pS):

∂uL
i

∂t
+

[ ∂

∂xj
(uL

i + uS
i )(uL

j + uS
j )

]L

= −∂pL

∂xi
+ ν

∂2uL
i

∂x2
j

(14)

∂uS
i

∂t
+

[ ∂

∂xj
(uL

i + uS
i )(uL

j + uS
j )

]S

= −∂pS

∂xi
+ ν

∂2uS
i

∂x2
j

(15)

The requirement why Eq. (13) should hold follows from consideration of Eq. (9). It is seen that if GL
i had

not been identical zero then solution uS
i would have had large-scale modes and would not have been small

for large wave numbers, which contradicts the definition of the small-scale velocity. Similar arguments can
be also applied to Eq. (8) to see that GS

i is in fact, zero too. As a result the forcing terms F S
i , F L

i in the
LS and the SS equations can also be written in alternative form, Eqs. (10, 11) give:

F L
i (uL

i , pL) =
[ ∂

∂xj
(uL

i + uS
i )(uL

j + uS
j )

]L

(16)

F S
i (uS

i , pS) =
[ ∂

∂xj
(uL

i + uS
i )(uL

j + uS
j )

]S

(17)

Similar scale separation applied to Eq. (3) produces the LS and SS continuity equations:

∂uL
i

∂xi
= 0,

∂uS
i

∂xi
= 0 (18)

It is seen that both the LS and the SS equations are “symmetric” with respect to interchange of superscripts
L and S. If one field (LS or SS) is known the other one (SS or LS ) can be found by integrating corresponding
governing equations. The nonlinear convective term of (15) represents the SS part of the total convective
term, and can be further re-written in more convenient form. Subtracting (16) from (15) gives the final form
of the SS momentum equation:

∂uS
i

∂t
+

∂

∂xj
(uL

i + uS
i )(uL

j + uS
j ) = −∂pS

∂xi
+ ν

∂2uS
i

∂x2
j

+ F L
i (19)

Finally, the coupled system of (14) and (19) along with (18) supplied by appropriate initial and boundary
conditions completely defines evolution of the LS and the SS fields.

III. Modeling of Small-Scale Governing Equation

Numerical simulation of the SS equation (19) is quite a challenge computationally since it would require
resolution of the smallest scales of the flow and therefore similar to DNS. On the other hand, the LS equation
(14) is solved on the coarse 3D LS grid and with a time step comparable to the characteristic turnover time
of the smallest resolvable LS eddy. Therefore, the complete knowledge of the SS field in space and time may
not be necessary since to close (14) one would need to know the affect of the SS fields on the LS grid at the
LS times. Since the SS field evolves on a much faster time scale than the LS field we introduce two time
coordinates such that:

ui(x̄, t) = ui(x̄, tL; tS) = uL
i (x̄, tL) + uS

i (x̄, tL; tS). (20)

Here, we assume that uL
i does not depend on the SS time coordinate tS , and is set to a constant in the tS

time scale. Thus, the time derivative in Eq. (19) is assumed to be with respect to tS and the LS velocity
field in Eq. (19) depends only on the spatial coordinates. To reduce computational expenses, while retaining
two-way coupling between the LS and the SS, the SS Eq. (19) is solved on a collection of 1D lines embedded
in domain Ω rather than in the whole domain Ω. Generally, there are no restriction on position of lines in Ω
and their curvature. Here, for simplicity, we consider a family of lines Ωl = {l1, l2, l3} which consists of lines
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l1 

l3 l2 Us(l2)

Us(l3)

Us(l1)

Figure 1. The SS 1D line arrangement within a 3D LS grid cell. One component of the SS velocity is shown
on each line schematically.

parallel to corresponding LS coordinates {x1, x2, x3} and intersects each other at the LS grid nodes as shown
in Figure 1, and introduce the SS fields defined on lines as: uS

i (x̄, tL; tS) −→ uS
ilk

(lk, tL; tS), lk ∈ Ω. Thus,
in TLS we resolve the SS fields in the domain Ωl only, while the LS fields are treated in Ω. Assume it is needed
N3

S points to resolve the smallest dynamically important scales for DNS, and N 3
L points to resolve only the

large scale dynamics, as in LES. In respect of this resolution requirement, the TLS approach would fall in
a category between DNS and LES, since it needs N 3

L + 3N2
LNS points to represent both LS and SS fields.

However, it is often the case for LES that N 3
L has to be quite high (NL → NS) in highly turbulent regions,

for example near walls, to accurately predict the LS dynamics because of inherent limitations of the SGS
models. In TLS, since the LS and SS are explicitly coupled, we expect less severe resolution requirements
(NTLS

L < NLES
L ) for the LS in highly turbulent regions. In addition, simulation of the SS fields on lines,

which requires 3N2
LNS point resolution, can be done in parallel reducing computational cost substantially.

Treating the SS fields on “less-dimensional” domain Ωl is computationally more efficient, but there is a
price to pay. When written on a line, say l1 = {x1, x2 = C2, x3 = C3}, where C2, C3 are constants, the SS
equation (19) is not closed and requires knowledge of first derivatives of the SS velocity and pressure, and
second derivatives of SS velocity in the directions l2, l3 which are orthogonal to the given line l1. Thus, all
derivatives of the SS fields in transversal directions to a given line have to be modeled, while all derivatives
along the line can be computed as a part of solution. The second difficulty arise from the fact that at the
LS grid nodes, where lines lk intersect, the SS field becomes overdetermined since its values can be found
from all three intersecting lines, and these values are not necessarily the same. Explicit requirement to have
unique values of the SS fields at the LS grid points would lead to coupling of SS fields on different lines at
those points, and therefore is not viable computationally. Instead, we decouple the SS field computations on
lines, which means that the SS fields do not interact each other if they belong to different lines. The value of
the SS field at the node {xn} of the LS grid G∆ then defined as an average over all three lines intersecting
at {xn}:

uS
i (xn, t)←−

[

uS
i,lk(xn, t)

]

lk
, xn =

3
⋂

i=1

lk, k = 1, 2, 3 (21)

One possible approach is to model unknown derivatives of the SS fields in terms of known ones by introducing
functions f i

j , gj , hi
j on each line lk:

∂uS
i

∂xj
= f i

j(
∂uS

i

∂xk
),

∂pS

∂xj
= gj(

∂pS

∂xk
),

∂2uS
i

∂x2
j

= hi
j(

∂2uS
i

∂x2
k

), (22)

i, j, k = 1, 2, 3 j 6= k

These functions constitute the only model parameters under the current approach and have to be prescribed.
Substituting these expressions together with the SS continuity equation into Eq. (19) gives the following
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evolution equation for the SS velocity field on line lk.

∂uS
i

∂t
+ (uL

j + uS
j )

∂

∂xj
(uL

i + uS
i δkj) + (uL

j + uS
j )f i

j (1− δkj) = (23)

−∂pS

∂xk
δki − gi(1− δki) + ν

∂2uS
i

∂x2
k

δkj + νhi
j(1− δkj) + F L

i (uL
i , pL)

i, j, k = 1, 2, 3

Before proceeding with analysis of the relationship between longitudinal and transverse derivatives of the SS
fields, we first formulate the basic assumptions adopted here to solve Eq. (23).

(i) All first derivatives of the SS velocity in transverse directions to a given line lk are much less than
corresponding LS derivatives and neglected:

∂uS
i (lk)

∂xj
= 0 i, j, k = 1, 2, 3 j 6= k (24)

(ii) All second derivatives of the SS velocity in transverse directions to a given line lk are neglected:

∂2uS
i (lk)

∂x2
j

= 0, i, j, k = 1, 2, 3 j 6= k (25)

(iii) Divergence-free requirement for the SS velocity field (18) is relaxed, as a result:

∂pS

∂xj
= 0, i, j, k = 1, 2, 3 (26)
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Figure 2. PDF of the normalized differences of the first SS derivatives S = ∂uS
i /∂xj − ∂uS

i /∂xk, j 6= k compared
with the Tsallis distribution (dashed line): (a) in linear scale, (b) in logarithmic scale. Note that all nine PDFs
are collapsed well.

There is a noticeable lack of comprehensive analysis of derivatives of the SS fields in literature, since most LES
studies are concerned with modeling of the SGS stress, which represents the LS quantity. Here, to support
(24), (25), and highlight the relationship between longitudinal and transverse derivatives of the SS fields, we
use statistical analysis of isotropic turbulent 2563 data set corresponding to Reλ = 116 based on the Taylor
micro-scale. The LS field is computed based on a uniform 323 LS grid using cubic spline interpolation, and
then subtracted from the total field to obtain the SS field. Since for each velocity component, a derivative
in line direction is always known, it is convenient to consider differences between derivatives in orthogonal
directions.
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Normalized PDFs of such differences ∂uS
i /∂xj − ∂uS

i /∂xk, j 6= k are shown in Figures 2(a) and 2(b)
in linear and logarithmic scale respectively. It is interesting to note they fit the Tsallis distribution quite
well for wide range of probabilities. The Tsallis distribution was introduced in the context of turbulence
by Beck.6, 7 It has a form PT (ξ) = 1/(Zq[1 + (1/2)β(q − 1)ξ2]1/(q−1)) where Zq is a normalization constant
and β = 2/(5 − 3q) is chosen to give a unit variance. It also reduces to a Gaussian distribution as q → 1.
Intuitively, it is clear from a representation of the SS field as a decomposition, that the SS derivatives should
be relatively small everywhere except at the local high-gradient, turbulent regions. The most probable state
of the SS velocity derivative differences is zero, suggesting that SS derivatives might be equal each other with
high probability. However, this is not true, which is supported by Figures 3(a) and 3(b), which show scatter
plots of the SS derivatives normalized by their rms (root-mean-square) values. These plots show correlations
between longitudinal and transverse SS derivatives (Figure 3(a)), as well as, between two transverse SS
derivatives (Figure 3(b)) of uS

1 component of the SS velocity. Other velocity components exhibit similar
features. It is seen that the correlation between the SS derivatives is complex and nontrivial. Most probable
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6
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(b)

Figure 3. Scatter plots of the normalized derivatives of the SS velocity: (a) longitudinal ∂uS
1

/∂x1 (SX) and

transverse ∂uS
1

/∂x2 (SY); (b) transverse ∂uS
1
/∂x2 (SY) and transverse ∂uS

1
/∂x3 (SZ)

values of the SS derivatives are concentrated around the origin. The “star” shape of these scatter plots is
clearly noticeable suggesting that events, when the SS derivatives are high in one direction and small in
the orthogonal direction, and vice versa, might dominate the flow field, with exception of events when both
derivatives are around origin and small.

It can be noted by inspection of the SS momentum Eq. (19) that first derivatives of the SS velocity enter
the nonlinear term as a sum with the LS first derivatives. Scatter plots showing dependence between the LS
derivatives and their sums with the SS derivatives are given in Figures 4(a) and 4(b) for the u1 component
of velocity. It is seen that the total derivatives is quite well correlated with the LS derivatives which makes
the assumption given by Eq. (24) justifiable. Other velocity components produce similar behavior. Note
that this assumption is only used in directions orthogonal to a line lk, while the full sum of the LS and SS
derivatives is retained along the line.

In a similar vein, second derivatives of the SS velocity can be analyzed. PDFs of differences between
second derivatives of the SS fields are shown in Figures 5(a) and 5(b) and qualitatively exhibit the same
features as differences of first derivatives. Again, the shape can be fairly well approximated by the Tsallis
distribution for a wide range of probabilities. The scatter plots of longitudinal and transverse second order
derivatives, normalized by their rms, are depicted in Figures 6(a) and 6(b) for the uS

1 velocity component.
Other SS velocity components exhibit similar pattern and are not shown here for brevity. The “star” shape
of these scatter plots follow the same shape as in case of first derivatives of the SS velocity, and resembles
the astroid (hypocycloid with four cusps), a plane curve which is also shown in Figure 6(b). In parametric
form, the astroid is given as (x1(t), x2(t)) = (a cos3(t), a sin3(t)), where a is parameter. This suggests a
possible way to model unknown second derivatives in terms of the known ones in direction of line lk. More
specifically, we assume that for any point in space and time (x, t), and any velocity component, there is a
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Figure 4. Scatter plots of the normalized LS velocity derivative versus the total (LS+SS) velocity derivative:
(a) longitudinal direction, ∂uL

1
/∂x1 (LX) and ∂uL

1
/∂x1 + ∂uS

1
/∂x1 (LX+SX); (b) transverse direction, ∂uL

1
/∂x2

(LY) and ∂uL
1

/∂x2 + ∂uS
1
/∂x2 (LY+SY). Straight line corresponds to a slope of one.
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Figure 5. PDF of the normalized differences of the second SS derivatives, S = ∂2uS
i /∂x2

j − ∂2uS
i /∂x2

k
, j 6= k

compared with the Tsallis distribution (dashed line): (a) in linear scale, (b) in logarithmic scale. Note that all
nine PDFs are collapsed well.

7 of 15

American Institute of Aeronautics and Astronautics Paper 2005-5318



parameter a such that any pair of second derivatives of the SS velocity in orthogonal directions lie on the
astroid with parameter a. Based on this assumption we compute PDF of the parameter a for all nine pairs of
the second SS derivatives (∂2uS

i /∂x2
k, ∂2uS

i /∂x2
j ), j 6= k. The results are presented in Figures 7(a) and 7(b).

It is seen that all PDFs of a collapse well and distributed log-normally, suggesting some universal behavior
of this parameter.
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Figure 6. Scatter plots of the normalized second derivatives of the SS velocity: (a) longitudinal ∂2uS
1
/∂x2

1

(SXX) and transverse ∂2uS
1

/∂x2
2

(SYY); (b) transverse ∂2uS
1
/∂x2

2
(SYY) and transverse ∂2uS

1
/∂x2

3
(SZZ). Solid

line is the astroid curve with parameter a = 2.

Therefore, a procedure for computing of unknown second derivative of the SS velocity results in sampling
the parameter a from the log-normal distribution followed by the solution of the astroid equation based on
the known value of the second derivative along the line lk. Note that the same procedure can also be applied
for estimation of the SS derivatives, instead of using the assumption (24), granted universal behavior of the
parameter a. In this paper, similar to the assumption (24), we use the assumption given by Eq. (25) to
model the unknown SS second derivatives. Clearly, for a given line lk and velocity component uS

i , if the
second derivative along lk is large in magnitude at some points then, as suggested by Figures 6(a) and 6(b),
the second derivatives in the orthogonal directions are small with high probability. On the other hand,
if the second derivative along lk is small, then again, the corresponding second derivatives in orthogonal
directions are small. Cases where the SS second derivative along lk is small and the SS second derivative
along orthogonal directions are large, happen with extremely low probability as follows from Figure 7.

Neglecting SS pressure gradient, according the assumption (26), means that the SS line velocity is di-
vergence free. In principle, the unknown SS derivatives in continuity equation can be modeled according
similar procedure as outlined above. However, since we are mostly interested in the LS dynamics here, the
continuity requirement is only enforced on the LS. This is also consistent with the fractional step approach
adopted for numerical simulation of the LS equations.

IV. Results and Discussion

In the numerical implementation of TLS approach, four steps are involved:

(i) At the n-th time step tLn , interpolate uL
i and pL onto each line lk, such that: uL

i (x̄, tL) −→ uL
ilk

(lk) and

pL(x̄, tL) −→ pL
lk

(lk).

(ii) Solve Eqs. (23) on each line with corresponding boundary condition to obtain uS
ilk

(lk, tS = tLn ; tLn)

(iii) Obtain the SS velocity uS
i on the LS grid by averaging uS

ilk
(lk, tLn) over the three lines intersecting at

the LS grid point xn according to Eq. (21): uS
i (xn, tLn)←− uS

ilk
(lk, tLn)

(iv) Advance the LS velocity uL
i (x̄, tLn) to time tLn+1 = tLn + ∆tL by solving Eq. (14). Here, ∆tL is the time

step for evolving the LS field.

8 of 15

American Institute of Aeronautics and Astronautics Paper 2005-5318



0 1 2 3 4 5
a/arms

0

0.2

0.4

0.6

0.8

1

P
D

F

(a)

0 5 10 15 20 25
a/arms

10-6

10-4

10-2

100

P
D

F

(b)

Figure 7. PDFs of the normalized parameter a/arms of the astroid for second derivatives of the SS velocity,
(∂2uS

i /∂x2
j )2/3 + (∂2uS

i /∂x2
k)2/3 = a2/3, j 6= k: (a) linear scale, (b) logarithmic scale. Note that all nine PDFs are

collapsed well and fit the log-normal distribution.

Step (ii) solves a problem of reconstructing the SS velocity field uS
ilk

along the line lk, given the LS

velocity field known. As a result, uS
ilk

evolves from initial zero state, at a time step ∆tS , until the SS energy
reaches the level of the LS energy at the smallest resolvable (cut-off) scale on the LS grid. This is illustrated
in Figure 8, where evolution of the SS spectral energy and the SS velocity are shown for one line in isotropic
turbulent field for three consecutive instants of time. Note that time tS has meaning of the time needed for

1 10 100
k
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100

E
(k

)

(a)
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x

-0.5
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2

uS
(x

)

(b)

Figure 8. Evolution of the SS spectral energy (a) and the SS velocity (b) on a line for three consecutive
instants of time tS . The SS velocity is reconstructed when the LS (dashed line) and the SS (solid line) spectra
are matched at the smallest LS (grid cut-off scale).

scale energy to propagate into the SS part of the spectrum. Due to nonlinear interactions between the LS
and SS fields, the energy starts cascading down to the SS part of spectrum till it reaches the viscous cut-off
level, thus creating the SS field. The evolution time needed to reconstruct SS velocity is different for various
lines and fully defined by the LS field given on the line and viscosity. Typical LS and SS spectra for different
lines in turbulent isotropic and channel flows are shown in Figures 9(a) and 9(b).

In step (iii), uS
ilk

is averaged over three lines intersecting at the LS cell to obtain uS
i (xn, tLn). This averaged

uS
i is considered the LS part of the SS velocity that is evolving at the slow time tL on the LS grid. In step

(iv), the LS field (Eq. 14) is forced by the LS part of the SS field in each cell. Further details on some early
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Figure 9. The LS (dashed line) and the SS (solid line) energy spectra: (a) along three arbitrary lines in
isotropic turbulence, (b) along a near-wall streamwise line in turbulent channel flow.

implementations of TLS approach can be found elsewhere.8, 9

A. Near-wall TLS for Channel Flow

Accurate modeling of the near-wall region constitutes the most difficult problem for LES. The maximum
production of the turbulent kinetic energy occurs well within the inner layer at y+ ≈ 12 and shows very
little variation with Reynolds number Reτ . Very high near-wall resolution is needed to accurately predict
turbulence generating events in the inner layer. Previous applications of the TLS method10, 11 to simulate
turbulent channel flow were focused on the whole flow domain including both inner and outer regions.
They showed ability to capture near-wall flow behavior using grids coarser than needed by LES. However,
overall cost reduction of TLS is only possible by effective handling of the SS field reconstruction. While
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Figure 10. Combined TLS/LES compared to TLS and DNS calculations: (a) Mean velocity 〈U+〉; (b) Reynolds
stress 〈uv+〉; (c) Friction coefficient Cf .

different strategies are available for parallelization of the SS line computations, applying TLS in the near-
wall region only, together with LES in the outer region, results in drastic reduction in number of lines and
can provide an interesting alternative to standard modeling approaches. In this effort we compare predictive
capability of the combined TLS/LES methods with pure TLS calculations for turbulent channel flow at
Reτ = 590. Near-wall regions are represented by three LS grid cells extending up to y+ ≈ 50 from walls.
The standard LES with dynamic Germano subgrid model is used in the outer region. We consider two
possible approaches to implement the combined TLS/LES calculations. In the first one, called TLS/LES-1,
we use TLS calculations in the whole domain overwriting all outer region flow variables with that computed
with LES. This implementation can not be considered as the “true” near-wall since computation of the SS
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velocities on the wall normal lines is nonlocal and uses information from the outer flow region. However, it
is still interesting to see how much the outer flow can affect the near-wall SS velocity fields. In the second
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Figure 11. Combined TLS/LES compared to TLS and DNS calculations: (a) streamwise rms u′+; (b) wall-
normal rms v′+; (c) spanwise rms w′+.

approach, called TLS/LES-2, we consider two identical families of TLS lines (one for each wall) with short
wall-normal lines. These wall-normal lines extends into three LS cells from the wall (y+ ≈ 50). Zero gradient
boundary condition is used for all SS velocities at the “slip” end of the wall-normal lines. However, we point
out that this boundary condition can be easily generalized to address real near-wall dynamics. Study of
more physically plausible boundary conditions, where the SS velocities are represented by stochastic process
with the mean proportional to local subgrid energy, is currently underway.

The statistical results of this study are shown in Figures 11 and 10. All TLS based calculations predict the
near-wall region reasonably well. The combined TLS/LES calculations tend to underpredict rms fluctuations
in the outer region compared to the pure TLS, except for the small core region (Figures 11(a-c)). This is
due to more pronounced dissipation property of the Germano model. The Reynolds stress and the friction
coefficient Cf are shown in Figures 10(b) and 10(c). Overall, the friction coefficient demonstrates the
right trend slightly underpredicting the curve-fitted values of Dean.12 Both combined TLS/LES approaches
produce very close overall statistical results. Finally, high and low-speed streaks, shown in Figure 12 for
TLS/LES-2 case, exhibit a typical near-wall pattern. This suggests that near-wall implementation of TLS
may be viable alternative to LES of wall-bounded flows.

Figure 12. Isosurfaces of the streamwise velocity fluctuations: u
′
+ = +3 (black) and u

′
+ = −3 (gray).

B. TLS of Isotropic Turbulence

The TLS approach is also applied to simulate decaying and forced cases of homogeneous and isotropic
turbulence. For the decaying case, a uniform 323 LS grid is used for 2π cubic domain. The SS velocity
field is simulated on lines with uniform 256 point resolution. Initial LS velocity field was determined from
a truncated developed 2563 DNS turbulent field at Reλ = 116. The objective of this simulation is to study
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the response of the SS velocity to constantly diminishing LS velocity without mean flow. In the course of
simulation the Taylor microscale Reynolds number is dropping from value of 116 to less than 60. Snapshots
of the LS vorticity magnitude isosurfaces at a fixed level of |ωL| = 10.0 are shown in Figures 13(a) and
13(c) for two consecutive instants of time T = 0.75 and T = 3.0. The corresponding isosurfaces of the
resolved SS vorticity magnitude at a level of |ωS | = 0.14 are shown in Figures 13(b) and 13(d). It is seen

(a) (b)

(c) (d)

Figure 13. Decay of isotropic turbulence: the LS (a, c) and the resolved SS (b, d) vorticity magnitude
isosurfaces at the same intensity level for two instants of time T = 0.75 and 3.

that the LS vortical structures of high intensity gradually die out. The simulated SS field responds to the
LS vorticity field in correct fashion by creating less intensive and more sparse SS vortical structures at later
times. Further study is needed to compare decay rates of the LS and SS vortical structures.

The instantaneous line spectra of the LS and SS velocities for three different orthogonal lines are shown in
Figure 9 (a). It is seen that the LS as well as the SS energy spectra do not show any directional dependence
suggesting that TLS SS model is able to reproduce isotropic property at the SS line level. However, there is
no smooth cut-off of the SS energy spectra at large wave numbers of the dissipation region, which may be
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Figure 14. Decay of isotropic turbulence: (a) The LS (dashed line) and the SS (solid line) energy spectra
along three orthogonal lines. The LS turbulent kinetic energy vs. time (b) in physical scale, (c) in logarithmic
scale, the straight line corresponds to a slope of −1.5.

related to inadequate SS resolution. Overall the SS spectra are matched quite well with the LS spectra at
the LS cut-off level which is important for correct reproduction of the SS influence on the LS. Decay of the
LS turbulent kinetic energy is shown in Figures 14(a) and 14(b) and exhibits power-law behavior but with
a little larger value of the decay exponent.

The forced isotropic turbulence presents the important ideal case to evaluate approximate turbulence
modeling approaches. TLS of the forced isotropic turbulent flow has been conducted to study the ability
of the model to sustain the stationary turbulent state at the LS and SS levels, and to provide an adequate
energy coupling between the LS and SS. A matching DNS on 1283 grid with the same forcing has also been
performed to analyze the overall predictive capability of the TLS approach. A uniform 323 LS grid is used to
discretize 2π cubic domain. All TLS lines have uniform 128 points resolution. For the chosen grid resolution,
TLS code requires about an hour of CPU time on IBM SP4 to reach the stationary turbulent state, while it
takes almost 17 hours of CPU time for DNS. Both codes were run in serial mode with the exception of the
SS computation which was done in parallel using 48 processors.

Both simulations start with zero initial conditions and periodic in space. The force is concentrated around
small wave numbers and gradually drives the flow to the stationary state. Here, we adopt the forcing scheme
of Eswaran and Pope.13 The random force of the form f̂i(k, t) = δij − kikj/k2wj(k, t)× [Θ(k)−Θ(k− kF )]
is used, where w is Uhlenbeck-Ornstein stochastic process, δij is the Kronecker delta and Θ is the Heaviside
function. The process is of diffusion type, has zero mean and correlated over time with a chosen time scale τ .
For a given grid resolution, three parameters define the intensity of forcing: the amplitude σ, the time-scale
τ and the maximum wave number of the forced modes kF . Here, we have taken the value of kF , normalized
by the lowest wavenumber, to be equal to

√
2. With the time scale τ = 0.95 and the amplitude σ = 0.04, the

forcing scheme produces the isotropic turbulent state with the Taylor microscale Reynolds number Reλ ≈ 65.
However, as it was pointed out by Fureby et al14 who used this method to study LES subgrid models, the
same forcing can not be guaranteed for different grid resolutions. Nevertheless, we believe that is not a
serious issue for comparison of TLS and DNS integral properties.

First of all, it is important to verify that TLS case is able to sustain the stationary turbulent state at the
LS and SS levels and do not destroy isotropy of the flow. The evolution of the turbulent kinetic energies of
the LS and the resolved SS is shown in Figure 15 (a). It is seen that both LS and SS reach the stationary state
approximately at time T ≈ 8. Note that the values of the resolved SS turbulent kinetic energy is multiplied
by 5000 to make comparison possible. It is clearly seen that the SS energy is mimic the behavior of the
LS energy suggesting the presence of the stationary energy cascade. The SS energy is also characterized
by small intermittent high-frequency fluctuations. To gain a confidence that TLS calculation is, in fact,
producing isotropic field, we compare the energy dissipation rate computed by the definition of ε = 2νsijsij ,
where sij is the fluctuating strain rate, with the one computed based on the well-known isotropic formula
ε1 = 15ν〈(∂u1/∂x1)

2〉. Time evolution of these dissipation rates is depicted in Figure 15 (b).
In addition, the time evolution of individual rms velocity components along with the averaged rms-

velocity scale are shown in Figure 16 (a). These figures suggest that TLS is able to capture the stationary
isotropic state quite well. Figure 16(b) shows the averaged energy spectra of TLS and DNS cases after the
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Figure 15. Forced isotropic turbulence: (a) Evolution of the turbulent kinetic energy of the LS (dashed line)
and the resolved SS (solid line); (b) the LS dissipation rate εL (dashed line) and εL

1
= 15ν〈(∂uL

1
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line).

stationary state is reached. The TLS energy spectrum approximates the DNS spectrum quite satisfactorily,
although it results in a small build-up of energy near the cut-off region. It can be related to the fact that
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Figure 16. Forced isotropic turbulence: (a) Evolution of the LS rms velocities u
′

i (solid line) and the LS
rms-velocity scale vrms(dashed line) for TLS; (b) the LS (dashed line) and DNS (solid line) energy spectra.

the SS evolution time has been chosen the same for all lines resulting in possible underestimation of the SS
field on some particular lines. Note that in TLS approach, the SS fields are evolving from zero to the point
when the LS and SS spectra are matched at the LS grid level. Generally, the SS time required to match
spectra is different for different lines. Matching spectral condition is important to capture correct coupling
between LS and SS fields. If the SS field grows too much it would produce unphysical effects on the LS field
by backscattering extra energy at the LS grid level, eventually contaminating the LS field. On the other
hand, if the SS field is not matched in spectral magnitude with the LS field at the LS grid level, it would not
provide enough dissipation to the LS field causing the energy pile-up by blocking forward cascade. Further
study is needed to rigorously address the issue of the SS evolution time, and its possible dependence on LS
resolution and Reynolds number.
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V. Conclusion

A novel approach to simulate high-Re flows has been developed based on the decomposition of velocity into
large and small-scale components. A coupled system of large and small-scale equations that not closed based
on an eddy-viscosity assumptions and require no adjustable parameters, has been derived and implemented
to simulate turbulent channel flow and isotropic turbulence. A near-wall TLS combined with LES has been
studied for the case of turbulent channel flow. Results suggest that the TLS approach has the potential
for capturing turbulent flow behavior at high-Re using very coarse grids. More importantly, the closure
assumption used in the TLS formulation has been shown to be reasonable based on application to different
types of high-Re turbulent flows.
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