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Large-Eddy Simulation (LES) of high Reynolds number turbulent flow over an axisymmetric

hill of height H = 2δ, where δ is the incoming turbulent boundary layer thickness, is presented in

this paper. Surface mean pressure, flow visualization and mean velocity profiles are presented and

compared with experiments. In general, good agreement is obtained for the surface mean pressure

and axial flow profiles. Analysis of the results show that multiple separation and reattachments

occur on the lee-side of the hill. These results are also consistent with experimental observations,

although there are some differences. The flow field is further analyzed to understand the dynamics

of the flow.

1 Introduction

Three-dimensional (3D) unsteady separation and re-attachment of a high Reynolds (Re) number

turbulent boundary is studied here using Large-Eddy Simulation (LES). In particular, turbulent

flow over an axisymmetric hill of height H = 2δ, is investigated here. High Reynolds number

flows past such obstacles are of considerable interest due to their relevance for naval applications.

Experimental studies of similar configurations by Simpson et al.1 suggested that complex 3D

vortical flow, and multiple separation and re-attachment occurs over a large area on the lee-side of

the hills. They2 also note that geometrically similar hills (H=2δ and H=δ) yield qualitatively and

quantitatively dissimilar flow dynamics. This hints at the level of complexity associated with flows

past such simple shapes.

Due to the highly unsteady nature of this flow, steady state Reynold-Averaged Navier Stokes

(RANS) cannot be employed to study this flow. On the other hand, Direct Numerical Simulation

(DNS) is computationally prohibitive. Here, we explore the ability of a LES method to capture

the flow dynamics. Since the interest here is on high Re boundary layer, the near wall region

must be properly resolved in order capture the physics. Past LES of high Re turbulent boundary
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layers have not proven successful in capturing the near wall physics without resorting to very high

resolution.3,4, 5 Many near-wall models have been proposed6,7, 8 for LES application but so far

such models have not proven very successful. More recently,9,10 a new two-level simulation (TLS)

has been proposed to address the near-wall region within a LES context. However, none of these

approaches have been used so far to study the current flow of interest.

In earlier studies,11,12,13 a localized dynamic subgrid model based on the one-equation transport

model for the subgrid kinetic energy was developed and applied to many high Re flows. This model

(denoted hereafter LDKM) has also been applied to many reacting flow problems14,15,16,17 and has

demonstrated stability and accuracy in both near-wall and free shear regions. Here, we investigate

the ability of the LDKM closure for resolving this high-Re flow.

First, we present the numerical model which includes description of the LES scheme used as

well as the details of the computational domain used in the simulation. We then present the results

of the simulation and discuss some of the interesting features observed. And finally, the paper ends

with conclusions and some discussion of the scope of future studies in this area.

2 Simulation Model

In LES, all scales of motion larger than the grid resolution are resolved in space and time by

the numerical scheme and the effect of the unresolved scales on the resolved motion are modelled

in the LES equations. The choice of the governing equations to employ depends upon the problem

of interest. In the present case, we are investigating low-speed, non-reacting flow. Hence, the

incompressible Navier-Stokes equations would be the appropriate governing equations. However,

in the present study, we employ the full compressible Navier-Stokes equations for two reasons: (a)

we have an efficient parallel compressible LES solver (fourth-order accurate in space and second-

order accurate in time) that has been extensively validated in both non-reacting18 and reacting

flows.14,15,17 (Note that, the flow speed in a typical gas turbine is very low, 20-30 m/s.), and (b) we

are also interested in determining if there is any acoustic signature associated with the 3D vortical

flow separation and re-attachment.

A compressible solver allows for proper coupling between acoustics and fluid flow, and earlier

studies19 suggest that free vortices generate a quadrupole acoustic radiation but vortex interaction

with a wall can generate dipole radiation (which is stronger). The present paper focusses primarily

on the ability of the LDKM approach (not the numerical scheme) to predict accurately the flow

physics. Comparison with experimental data is carried out to demonstrate the ability of the model.

The analysis of the near-field acoustics will be reported in the near future.

The unsteady, compressible, exact Navier-Stokes equations governing the fluid flow (Eulerian

approach) are presented below. Employing tensor notation, the conservation equation for mass,

momentum, and energy are, respectively:
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where ρ is the mass density, p is the pressure, E is the total energy per unit mass, ui is the velocity

vector, qi is the heat flux vector, and τij is the viscous stress tensor. These equations are completed

with the following relations:
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)− 2
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T + 110
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κ =
µCp

Pr
(7)

Here, µ, κ, Cp, and Pr are, respectively, the molecular viscosity (approximated by Sutherland’s

Law), the thermal conductivity, the specific heat at pressure and the Prandtl number (Pr = 0.72

for air).

These equations can be treated as an exact mathematical model for the motion of perfect gases

regardless of whether or not the flow is laminar or highly turbulent. However, DNS resolution is

required to exactly recover the equations in a computational model. As this is not practical, a LES

representation of the governing equations is therefore needed.

As briefly mentioned earlier, LES fully resolves the large-scale dynamics and employs models

at the sub-grid level. Therefore, an operation is required which can separate or filter the gov-

erning Navier-Stokes equations into large-scale and SGS components. This is achieved, following

Erlebacher et al.,20 by applying a spatial filtering operation to the governing equations such that

f = f̃ + f ′′. There, ∼ and ′′ denote the resolved super-grid and unresolved sub-grid quantities,

respectively. The resolved super-grid quantities are determined by Favre filtering:
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f̃ =
ρf

ρ
(8)

where the over-bar represents spatial filtering defined as

f(xi, t) =
∫

f(x′i, t)Gf (xi, x
′
i)dx′i. (9)

Here, Gf is the filter kernel and the integral is over the entire computational domain. Applying this

filtering operation (basically, a low-pass filter of local grid size ∆) to the Navier-Stokes equations,

the following LES equations are obtained:

∂ρ

∂t
= −∂ρũi

∂xi

∂ρ ũi

∂t
= − ∂

∂xj

[ρũiũj + p δij − τ ij + τ sgs
ij ] (10)

∂ρẼ

∂t
= − ∂

∂xi

[(ρẼ + p)ũi + qi − ũjτ ji + Hsgs
i + σsgs

ij ]

The sub-grid terms resulting from the filtering operation, denoted with super-script sgs, represent

the small-scale effects upon the resolved-scales in the form of additional stresses and fluxes. The

filtered velocity, ũi, and temperature, T̃ , are used to approximate τ ij and qi, respectively. The

resulting SGS terms, the sub-grid stress tensor, sub-grid heat flux, and unresolved viscous work

are defined, respectively, as:

τ sgs
ij = ρ[ũiuj − ũiũj]

Hsgs
i = ρ[Ẽui − Ẽũi] + [pui − pũi] (11)

σsgs
i = [ujτij − ũjτ ij].

2.1 Subgrid Closure

The subgrid terms, Eq. 11, require explicit modelling since the small-scale correlations are not

known. Since, dissipation of the turbulent kinetic energy occurs primarily in the small-scales, an

eddy viscosity νt model is employed. The simplest model is: νt = Cνl
sgsvsgs, where lsgs and vsgs are

respectively, the characteristic length and velocity scale at the small-scale, and Cν is a coefficient

of proportionality. For LES, characteristic length scale is modelled as the local grid size, ∆ (=

(∆x1∆x2∆x3)
1/3).

Two approaches are popular for the specification of the velocity scale vsgs: (a) the classical

Smagorinsky’s21 algebraic model in which vsgs = ∆|S̃ijS̃ij|, where S̃ij is the resolved rate-of-strain
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tensor, and (b) the subgrid kinetic energy approach of Schumann22 in which vsgs =
√

Ksgs, where

Ksgs is the subgrid kinetic energy which is obtained by solving a transport equation along with the

LES equations.

Past studies have demonstrated that since the algebraic model requires equilibrium between

production and dissipation of energy (which occurs only in the dissipation region of the spectra),

the grid resolution requirement can be quite severe, especially for the near-wall problem. Here, we

employ the Ksgs based subgrid closure which has a significant advantage over the algebraic model

since equilibrium between production and dissipation is not needed, and as a result, the grid scale

cutoff can be in the inertial range.

This ability allows the use of the Ksgs subgrid closure to simulate high-Re flows using relative

coarse grids, shown in many past studies.13,15,18 The question that we wish to address in this study

is how coarse one can go in the near-wall region of very high-Re flow when using the Ksgs model

before the accuracy is compromised.

A transport equation for the subgrid kinetic energy (Ksgs), defined as Ksgs = 1
2
[ũ2

k−ũ2
k] is:11,13,23

∂ρKsgs

∂t
+

∂

∂xi

(ρ ũiK
sgs) = P sgs −Dsgs +

∂

∂xi

(
ρ

νt

Prt

∂Ksgs

∂xi

)
(12)

were Prt is the turbulent Prandtl number which is assumed constant and equal to unity. Here, P sgs

and Dsgs are, respectively, the production and dissipation of Ksgs. The production term is defined

as, P sgs = −τ sgs
ij (∂ũi/∂xj), where τ sgs

ij is the modelled subgrid stress tensor,

τ sgs
ij = −2ρ νt(S̃ij − 1

3
S̃kkδij) +

2

3
ρKsgsδij, (13)

In the above expression, νt = Cν(K
sgs)1/2∆ and S̃ij, =

1
2
(∂ũi/∂xj + ∂ũj/∂xi) is the resolved

rate-of-strain tensor. The dissipation term is modelled as Dsgs = Cερ(Ksgs)3/2/∆.

There are two coefficients in this model, Cν and Cε that have to be either specified or determined

dynamically as part of the solution. In the present study, we employ the aforementioned LDKM

model to obtain these coefficients locally as a function of space and time. Although the LDKM

model has been discussed in detail elsewhere,11,13,14 for completeness, we summarize the key features

of this model.

2.2 Localized Dynamic K-Equation Model (LDKM)

Experimental measurements in high Re turbulent jet24 suggest that the subgrid stress τ sgs
ij at

the grid filter level ∆ and the Leonard’s stress Lij at the test filter level ∆̂(= 2∆) are self-similar.

In the LDKM model, this observation is extended and it is assumed that Lij and the subgrid stress

τ̂ijsgs at the test filter level are also similar. Using this, τ̂ijsgs is modeled using the same form as for
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τ sgs
ij (Eq. 13), except that all variables are defined at the test filter level. Thus, for example, the

subgrid kinetic energy at the test filter level is ktest = 1
2
[
̂̃
uk

2− ̂̃uk
2
] and this quantity is fully resolved

at the test filter ∆̂ level. Thus, a direct (but over determined) expression for the model coefficient

Cν is obtained:

Cν =
L′ijMij

2MijMij

(14)

Here, a least-square method is employed to obtain Cν . In the above expression

L′ij = Lij − 2

3
ρ̂ ktestδij (15)

Lij = −2ρ̂Cν

√
ktest∆̂(〈S̃ij〉 − 1

3
〈S̃ij〉δij) +

2

3
ρ̂ ktestδij (16)

Mij = −ρ̂
√

ktest∆̂(〈S̃ij〉 − 1

3
〈S̃ij〉δij) (17)

A similar approach is used to obtain the dissipation coefficient Cε such that:

Cε =
∆̂µ′

ρ̂ k
3/2
test

(〈τ sgs
ij

∂ui

∂xj

〉 − 〈τ sgs
ij 〉〈

∂ui

∂xj

〉) (18)

In the above formulation < f > and f̂ both indicate test filtering. More details are given

elsewhere.11,13 There are a few noteworthy points to highlight in the LDKM closure: (a) the

LDKM approach does not employ the Germano’s identity,25 (b) the self-similar approach implies

that both ∆ and ∆̂ must lie in the inertial range and this provides an estimate for the minimum

grid resolution that can be used for a given Re, (c) the denominator in both Eqn. 14 and 18 are

well-defined quantities at the test filter level and can be directly computed, (d) the evaluation of

the coefficients can be carried out locally (i.e., at all grid points) in space without encountering any

instability, (d) the LDKM approach satisfies all the realizability conditions26 in majority of the grid

points even in complex flows, and (e) the dynamic evaluation can be used near walls without any

change. Finally, the computational overhead of the LDKM is not very significant since only one

additional equation has to be solved.

3 Numerical Method

The LES equations of motion are solved on a three dimensional, boundary-conforming grid using

a finite-volume scheme that is fourth-order accurate in space and second-order accurate in time.

No-slip, adiabatic wall conditions are used with non-reflecting inflow/outflow boundary conditions.27

In general, the computational cost is significant when the compressible solver is employed for
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low-speed flow since the explicit time step is restricted by the acoustic speed. However, note that

the present study is not focussed on demonstrating an efficient numerical solver, rather it is focussed

on demonstrating the ability of LDKM approach (as used in LES) to study high Re wall bounded

flow.

In any event, the compressible solver is very efficient on parallel architecture enabling these

simulations. The computational domain is distributed in parallel using the Message-Passing In-

terface (MPI) standard and optimized. The simulation cost is 128.4 CPU nano-sec per time-step

per grid-point per processor on the IBM SP4. To reach statistical stationarity, the simulation is

carried out for multiple flow through time (τ) over the bump. Typically, Nτ flow through data is

averaged (after initial transients are washed out). Simulations were also carried out using a reduced

temperature or 30 K instead of 300 K (which decreases the acoustic speed) to increase the explicit

time step. Statistical results appear to be insensitive to this change. The mean moments reach

stationarity relatively quickly within Zτ , however, the higher moments such as the Reynolds stress

take longer to settle down.

Figure 1 shows the geometry for the simulation. The axisymmetric hill height H is 78 mm with

the circular base of radius is 2H. The shape of the hill is defined by:

y(r)

H
= − 1

6.04844
[Jo(Λ)Io(Λ

r

a
)− Io(Λ)Jo(Λ

r

a
)] (19)

where Λ = 3.1926, Jo is the Bessel function of the first kind, and Io is modified Bessel function

of the first kind. The flow Reynolds number, based on H and inflow velocity (Uref=27.5 m/s),

is approximately 1.3×105. Figure 1 shows the dimensions of the computational domain in the

streamwise and wall-normal directions in terms of the hill-height (H). The zenith of the hill is

about 3.4H downstream from the inflow boundary and the computational domain extends 6H in

the spanwise direction and 20H in the streamwise direction.

Simulations were conducted initially using different grid but all the results reported here were

obtained using the largest grid attemped so far: 256×128×128 grid resolution. For this resolution,

the near-wall minimum grid spacing is 56µm in the wall-normal direction. This resolution is chosen

so as to give us enough grid points near the surface to reasonably resolve the boundary layer and

the separation downstream of the hill. An estimate in terms of the wall units yields minimum (∆x+,

∆y+, ∆z+) as (12, 4, 100), respectively. Grid clustering is employed in the near-wall and on the

lee-side of the hill zenith. However, grid stretching is kept to a minimum, typically less than 2-4

percent in regions of high shear to minimize stretching error. The resolution in the inner boundary

layer is considered marginal, and perhaps additional simulations using even higher resolution is

warranted. On the other hand, the coarse resolution constraint is consistent with the LES approach

pursued here, which is to attempt LES of high Re flows on relatively coarse grids using a higher
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order subgrid closure.

Simpson et al.1 report inflow profiles, with nominal speed of Uref and 0.1% freestream turbulence

intensity, having boundary layer thickness (δ) of 39 mm and Reynolds number based on momentum

thickness (Reθ) as 7300. Similar mean turbulent boundary layer profile (not shown here) matching

above conditions are specified as inflow profile. A Gaussian random field (0.1% of the mean) is

added to the inlet velocity profile. This value is as reported.1 The subgrid kinetic energy intensity

in the inlet is also initialized to a 0.1% level. For this low level of inflow turbulence, all the Ksgs in

the flow is primarily due to production in the boundary layer. Future simulations will revisit inflow

by using a more realistic turbulent conditions.

4 Results and Discussion

The H = 2δ case is analyzed in detail and compared with available data.1 The smaller bump

data is expected to become available soon28 and therefore, a more detailed comparison for both

the cases will be reported later. A word of correction must be mentioned regarding the location

where experimental data has been collected. We had been informed by Simpson et al., in a private

communication, that the location x/H = 3.69 mentioned in their journal paper1 is incorrect and

instead x/H = 3.63 must be used for any meaningful comparisons.

The LES time-averaged static pressure coefficient (Cp) is computed here as (plocal,static - pref,static)

/ (plocal,total - pref,static). The computed surface distribution of Cp is presented in Fig. 16(a) and

the corresponding experimental result1 is shown in 16(b). For direct comparison, the same number

of contour intervals are used in both figures. Four thin-lined concentric circles are shown each

representing quarter-radius mark from the center located at the zenith of the axisymmetric hill.

There is remarkable similarity in both features and magnitude between the LES and the ex-

periment. Both results show that as the boundary layer approaches the leading face of the bump,

the pressure increases but the increase is not large enough to cause separation. The pressure then

decreases at the top of the bump as the flow accelerates (Fig. 3). Maximum (suction) pressure

occurs exactly at the top for both cases, but the region is larger in the numerical study. An adverse

pressure gradient exists in the lee-side of the bump in both cases, however, adverse pressure region

begins later in the computation, perhaps due to the larger low pressure region predicted on the top

of the hill. In the spanwise direction both LES and experiments show a nearly symmetric pattern

about the center plane parallel to streamwise direction suggesting that the flow is nearly symmetric

about that plane. However, symmetry is lost (as will be seen later) on the lee-side, eventhough the

surface static pressure contours mentioned above remains nearly symmetric about the center plane,

where multiple boundary layer separation occurs.

Flow separation on the lee-side occurs due to the adverse pressure gradient which peaks around

the center line parallel to the streamwise direction at the trailing edge of the hill. This region is
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at nearly the same location in the computation (Fig. 3(a)) and experiments. There are, however,

some differences in the spanwise direction which is more apparent in the flow visualization discussed

in the next section.

Figures 3(a) and (b), respectively, represents the static pressure coefficient (Cp) and mean

streamwise velocity at the center plane parallel to the streamwise direction. It is important to

point out that, while traversing the hill from its foot through the zenith onto its lee-side, at nu-

merous locations the pressure gradient normal to hill surface through the boundary layer is not

zero but rather some finite, either negative while approaching or positive around the hill zenith,

value. While approaching the hill, sensing streamwise adverse pressure gradient, flow slows down

upto around x/H of -2.0 as seen in Fig. 3(b). Then strong streamwise favorable pressure gradient

propels the flow up the hill from x/H of -1.0 onwards till it reaches the hill zenith. There on after,

faced with stronger streamwise adverse pressure gradient the flow seperates on the lee-side of the

hill. Flow-reattachment occurs downstream of the hill thereby forming a turbulent boundary layer

which will be measured and compared with.

Figure 3(b) shows no major seperation regions on the lee-side along the center plane from

the time-averaged point-of-view. However, we have observed separation regions around x/H of

1.0, albiet small, along the center plane in the instantenous data. One reason contributing to no

presence of such regions is owed to our observations of such regions being non-stationary with time

and space.

4.1 3D flow separation and reattachment

The flow separation in the lee-side of the bump is quite complex and highly 3D due to both

streamwise and spanwise pressure gradients on the lee-side. Figures 4(a) and (b) show respectively,

two instantaneous streakline patterns from the LES. These figures show instantaneous pathlines

of the fluid and the abrupt termination of a streamline suggests a stagnation point. Multiple

stagnation points/regions are seen in these figures. These regions are highly transient and do not

show any symmetry in the spanwise direction. Figures 17(a-c) show respectively, the corresponding

steady-state streamline pattern, velocity vectors at y+ = 8.63, and the oil flow pattern from the

experiment. There are similarities and differences between the instantaneous and steady patterns

and also between the LES and the experiment. Multiple regions of recirculation and separation are

observed in both studies and many of these features are in good qualitative agreement.

These regions are formed since the fluid motion is in a highly 3D pressure gradient field. The

incoming flow accelerates both over the top and around the sides of the hill due to favorable pressure

gradient in both direction. However, the magnitude decreases outward from the pressure minimum

at the center plane. The flow decelerates in the lee-side with the pressure reaching a maximum at

the center plane and just at the end of the bump. The spanwise favorable pressure gradient in the
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front causes flow to initially diverge outward, however, in the lee-side this gradient is adverse. This

causes the side boundary layers to converge on the back of the bump and closer to the center plane

in a high pressure region. In the front and on a portion of the lee-side there is symmetry about the

center plane. However, separation occurs in a highly 3D manner, and complex 3D recirculation and

re-attachment patterns are seen in the flow. The flow in this region contains both saddle points as

well as stagnation points.

The flow field is further analyzed to understand the flow pattern. Figures 6(a-c) shows respec-

tively, the mean streamwise, the mean spanwise, and the mean wall-normal vorticity patterns on the

surface of the hill. Bi-level filled-contour pattern (i.e., positive shown as black color and negative

shown as white color) is chosen to further exemplify the directional nature of the vorticity patterns

over the hill surface. Four thin-lined concentric circles are shown each representing quarter-radius

mark. The streamwise vorticity contour, as presented in Fig. 6(a), shows the alternating pattern

of the streamwise vorticity while passing the hill.

The streamwise vorticity upstream of the hill zenith has the same orientation as the incoming

turbulent boundary layer vorticity. The streamwise vorticity changes direction while passing over the

side of the hill and finally it retains its prior direction downstream past the hill. There is intermittent

region downstream of the zenith where inter-mingling of the opposite streamwise vortical patterns

exists which suggests multiple separation zone of both the sides of the hill zenith. The sign change

of the streamwise vorticity while traversing the sides of the hill is owed to the fact of the velocity

vector (which for no-slip wall follows the body contour) pointing upwards and then downwards

while going up and down the hill making the effective wall-normal velocity component away from

and then towards the wall, respectively. The relative strength of the effective wall-normal velocity

in spanwise direction determines the orientation of the streamwise vorticity.

Figure 6(b) presents the mean spanwise vorticity over the hill surface. Vortical orientation in

the spanwise direction is retained from the incoming turbulent boundary layer by the flow while

traversing over the hill surface except over a small region where massive multiple separations are

observed. The vortical orientation in that region quickly changes direction (from positive to nega-

tive) suggesting flow separation. The region is confined well downstream of the zenith between (in

streamwise direction) x/H = 0.5 (first circle) and x/H = 2.0 (fourth circle) on both sides of the hill.

Approximate symmetrical patterns are observed about the center-plane in the spanwise direction.

Finally, the mean wall-normal vorticity contours, as presented in Fig. 6(c), shows the multiple

separation zones downstream of the hill zenith on both the sides as seen by the counter-rotating

wall-normal vortical patterns.
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4.1.1 Mean Flow Statistics

Figure 18 shows the spanwise variation of the friction velocity uτ =
√

τw/ρ. Here, τw is the total

shear stress at the wall, taking into account the velocity components in both the streamwise (U)

and spanwise (W ) direction, at the wall. Specifically, we compute τw as equal to µ(∂Q
∂y

)wall, where

Q =
√

U2 + W 2. The predictions are compared with the measurements at the axial location, x/H =

3.63. At this location, the flow has re-attached on the wall and the turbulent boundary has reformed.

There are some qualitative and quantitative agreement between predictions and measurements. The

magnitude of uτ in both cases agree very well and the general spanwise variation is also qualitatively

similar. The computed uτ shows much more spatial variability than the experimental data. This

may be due to two reasons: an inaccuracy in the resolved boundary layer near-wall profile leading

to non-physical fluctuations or that since the measurements were at discrete locations, the finer

scale variations were not resolved in the experiments. At this point, this issue remains unresolved.

Both results show that the friction velocity increases to a maximum near the center plane

z/H = 0.0. There are two regions with local maxima observed at around z/H = −0.5, and again

at around x/H = −1.2 in both LES and experiments. The exact locations, however, are slightly

different. Both LES and data show that the flow is no longer symmetric about the center plane at

this axial location. In general, the peaks in the experimental data are higher than in the LES. The

implications of these observations will become apparent in the following discussion.

Figures 19 and 20 show respectively, the normalized (by uτ ) steady-state streamwise and span-

wise velocity profiles (u+ − y+, w+ − y+) at x/H = 3.63. The LES velocities are normalized using

the uτ values computed earlier. In general, both the computed and measured mean streamwise

velocity wall-normal profiles at all the spanwise locations show that a reasonably resolved viscous

sublayer exists for y+ < 10 and that a classical log-profile occurs in a region 10 < y+ < 1000. The

predicted slope is in excellent agreement with measured data. The variability (of the magnitude) in

the spanwise direction of the velocity magnitude is similar for both LES and experiments, although

in general, the measured profiles are lower in this region. The difference might be due to the higher

uτ in the measurements. We plan to revisit this issue by comparing the unscaled profiles at a later

date.

The normalized mean spanwise velocity (w+) profiles shown in Fig. 20 also show similar quali-

tative and quantitative agreement with measured data. In general, the magnitude of w+ is lower in

the experiments but this could be due to the aforementioned higher values of measured uτ . How-

ever, the overall wall normal trend is strikingly similar with the velocity changing sign at around

y+ = 1000 which is approximately at the end of the log-layer. Beyond y+ > 1000 as the free stream

edge is approached, the spanwise motion rapidly decays to zero.

The Reynolds stress (uv+) profiles are shown in Fig. 21. Both results show similar trend. In

general, uv+ < 0 in the boundary layer indicating gradient production of kinetic energy. The LES

11 of 37



predicts a peak at the edge of the log-layer (around y+ = 1000) whereas the experiments suggest

a slightly larger peak at a location further away from the wall (around y+ = 3000). In physical

dimensions, these locations correspond to about 14 mm and 41 mm respectively. In general, higher

order statistics, like Reynolds stress, would take more time to settle in comparison to the first order

statistics which is more likely the effect here.

4.2 Time Dependent and Spectral Features

Figures 11(a-c) shows respectively, the iso-surface of the three vorticity components. The vortical

structures appear just downstream of the zenith of the hill where multiple separation zones are

observed. Initially, the structures have some coherence (as seen by smooth and continuous iso-

surface for a relatively longer spatial distance) upstream of the hill but subsequently, these structures

breakdown into small-scale randomly oriented structures. The vorticity field appears to be highly

3D with no component dominating in the 3D separation/re-attachment regions.

Figure 12 shows normal stresses (u2, v2, w2) at x/H = 3.63 and y+ = 787 plotted spanwise

about the hill center line. We observe that each individual normal stress peaks on either side of the

center line around z/H of 0.5. An-isotropic behaviour is observed by noticing higher peaks for the

streamwise normal stress as related to the wall-normal and spanwise normal stresses.

Figure 20 shows that the mean spanwise velocity switches direction on either side of the center

line. This indicates the presence of strong streamwise counter-rotating vortex pair centered around

z/H = 0.0. Figure 13(a) shows the secondary flow vector field at the measurement plane. We

observe the presence of streamwise counter-rotating vortex pair located about y/H of 0.25 above

the surface and centered around z/H = 0.0. We also observe large turbulence levels away from the

wall around the hill center line as seen in Fig. 13(b) where TKE = q2/2 = (u2 + v2 + w2)/2. The

higher turbulence levels are contributed to the presence of strong streamwise vortices as indicated

by the secondary flow streamlines. This is consistent with the observations of Simpson et al.1

Spectral analysis of the velocity fluctuations is also carried to investigate the spectral content

of the flow. Figure 14 shows the streamwise and spanwise velocity component spectra. The inertial

range −5/3 slope is also shown. There is a small representation of the inertial region in the edge of

the log layer (y+ = 787).

Figure 15 shows the characteristic pressure spectra at the same location. There is no specific

peak in the spectra indicating a broadband acoustic emission at this location. Future study will

investigate the instantaneous features and the near field acoustics in more detail.

5 Conclusions

Large-Eddy Simulation (LES) with a Localized Dynamic subgrid Kinetic energy Model (LDKM)

is used to simulate high Re turbulent flow over an axisymmetric hill of height H = 2δ. Sur-

face pressure distribution, flow patterns and mean flow properties are compared with experimental
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observations. Most of the measured features are reproduced qualitatively and in some cases, quanti-

tatively by the LES. The surface pressure distribution and the formation of the multiple recirculation

regions seen in the experiments is well reproduced in the simulation. Some differences in the lee-side

where complex 3D separation and re-attachment occurs are also observed and discussed. These re-

sults suggest that the LDKM approach has the ability to capture complex near-wall high-Re features

using a resolution that is reasonable for LES studies. It is believed that this ability is achieved in

LDKM due to two features: the characteristic velocity scale for the subgrid fluctuation is explicitly

computed in LDKM, and hence, its effect on the resolved motion is properly included, and, the

localized dynamic approach used in the LDKM approach provides a robust method to compute the

model coefficients everywhere without requiring any averaging or smoothing.

Future studies will revisit this bump case using a new subgrid simulation model9,10 as well as

using LDKM but with improved inflow turbulence. Finally, simulations of the flow past the H = δ

case will be completed (these simulations are currently underway) and analyzed.
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