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Three dimensional large-eddy simulations (LES) of a forced square jet and a square
jet-in-cross-flow (JICF) are conducted using the 19-bit Lattice Boltzmann Equation (LBE)
method. A localized, dynamic algebraic subgrid model is used to extend the LBE method
to LES. In all simulations, the upstream jet inlet is also resolved. Thus, interactions at the
jet exit plane occur naturally. Simulation of the forced jet shows that the shed coherent
structures undergo multiple axis switching in the jet increasing the effective mixing. The
overall features are in agreement with past experiments for a similar configuration. JICF
results are also compared with data and with other numerical method results. Good
agreement with data is again obtained in the present study. These results establish LBE-
LES as an alternate method for simulating turbulent shear flows. The strengths and
limitations of the LBE-LES are also discussed.

1 Introduction

Improvements in gas turbine engine design are
needed to meet the increasingly stringent federal and
international emission laws. Fuel efficient, low-NOx
gas turbine systems are being investigated to meet
these laws. Lean combustion systems have the poten-
tial for meeting these goals. However, one consequence
of lean burning is that as the equivalence ratio of
the fuel-air mixture is reduced, small turbulent fluc-
tuations in the flow can have a major effect on the
flame leading to the phenomenon called Lean-Blow
Out (LBO). During LBO, the flame first undergoes
local and then, global extinction. Sometimes (and de-
pending on many known and unknown parameters),
LBO is accompanied by an increase in pressure fluctua-
tions leading to combustion instability. LBO has been
observed in gaseous premixed systems as well as in
liquid fuelled gas turbines. Therefore, this is a funda-
mental feature in gas turbine engines. Understanding
and controlling LBO (or perhaps increasing the lean
stable flammability limit) would lead to more efficient
combustion systems. Recent studies employing active
control>#H are focussed on controlling fuel-air mixing
and/or flame propagation so that stable lean burning
systems can be achieved.

Active control using fuel modulation has been shown
to be an effective approach both experimentally" and
numerically® Numerical simulations can help in the
design cycle if the physics of LBO and active control
can be accurately computed. Computational efficiency
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is very important since there are many parameters (de-
sign, placement and forcing conditions) that have to be
optimized and there is a wide range of physical dimen-
sions that must be resolved. For example, a typical
fuel injector orifice can be as small as 1-5 mm and
therefore, the micro-scale actuators have to be much
smaller than this scale (and hence, these devices are
MEMS-scale devices). The flow both inside and out-
side the actuator must be resolved in order to capture
the dynamics of the momentum injection process. On
the other hand, to study fuel air mixing (and perhaps
combustion), flow in the combustor (with a length of
around 30 cm) also have to be simulated. The resolu-
tion requirement to resolve the synthetic jet embedded
inside the fuel injector and the flow outside in the com-
bustor is too severe for any single numerical method.

The Lattice Boltzmann Equation (LBE) method has
the potential to provide a collaborative resolution to
this multi-scale problem ™% LBE has been used suc-
cessfully to simulate many fluid dynamic problems®®
and is seen as an attractive alternative to conven-
tional finite-difference scheme because it recovers the
Navier-Stokes equations, and is computationally very
efficient, more stable, and easily parallelizable. In
recent studies,” a two-dimensional LBE method was
developed and demonstrated for DNS of synthetic jet
flows. Studies with synthetic jets embedded within the
fuel injector were also carried out and it was shown
that fuel-air mixing can be considerably enhanced by
synthetic jet actuation.

This paper reports on the development of a full
3D LBE model for direct (DNS) and large-eddy sim-

ulations (LES). The eventual goal is to combine the
LBE-LES with a conventional finite-volume LES (FV-
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LES) whereby, the LBE-LES model is used in regions
where very fine-scale features have to be resolved (e.g.,
inside the embedded synthetic jets and the fuel in-
jector) and FV-LES is used in the combustor. The
FV-LES approach is a well established method already
operational® and the present study will demonstrate
the ability of the LBE-LES.

In this paper, LBE-LES of square jets and square
jets in cross flow are conducted and compared to avail-
able data. Square jets are simulated here since it is
well known that mixing enhancement increases when
non-circular jets are employed X This enhance-
ment is shown to be in part, due to the axis-switching
mechanism triggered by non-uniform self-induction of
the large-scale structures shed from the jet exit. Ex-
perimentally and numerically, this feature has been
observed in elliptic jet/ rectangular jet, square
jet B Jet in cross flow is also a canonical flow that
models fuel jet injection in realistic devices. In ad-
dition, jet in cross flow (JICF) occurs in other real
applications, such as, V/STOL aircraft, internal cool-
ing of turbine blades, dilution air jets in combustion
chamber of gas turbine engines, etc. The square jet in
cross-flow simulated here is a test configuration that
was studied both experimentally™® and numerically
in the past, and therefore, data exists for validation.

2 LBE Formulation

The LBE method originates from a Boolean fluid
model known as the lattice gas automata (LGA) which
simulates viscous fluid flow by tracing the fluid mo-
tion through advection of fluid particles and particle
collision on a regular lattice. LBE is an improvement
over LGA in which the Boolean fluid model is replaced
by a single continuous particle distribution, which is
analogous to the particle distribution function in ki-
netic theory. This replacement eliminates the intrinsic
noise inherent in LGA schemes and overcomes the
shortcomings of a limited transport coefficient. The
introduction of the BGK single relaxation time model
for the collision operator further simplifies the algo-
rithm and eliminates the lack of Galilean invariance
and the dependence of pressure on velocity " This
model assumes that the particle distribution function
relaxes to its equilibrium state at a constant rate, and
the collision operator is similar to the classical BGK
Boltzmann operator.

Since its introduction, the LBE method has been
shown to be a competitive method in solving com-
putational fluid dynamics (CFD) problems. Whereas
conventional Navier-Stokes schemes solve the macro-
scopic properties of the fluid explicitly, LBE method
solves the Boltzmann equation by tracking the evo-
lution of the microscopic particle distribution of the
fluid in phase space (velocity space, physical space and
time). Consequently, the conserved variables of the
fluid (density and momentum) are obtained indirectly

by local integration of the particle distribution (over
the velocity space). The incompressible Navier-Stokes
is recovered in the nearly incompressible limit of LBE
using the Chapman-Enskog expansion.

Solving the lattice Boltzmann equation instead of
the Navier-Stokes equation provides three distinct ad-
vantages. First, due to the kinetic nature of the LBE
method, the convection operator is linear. Simple con-
vection in conjunction with a collision process allows
the recovery of the nonlinear macroscopic advection
through multi-scale expansions. Second, because the
macroscopic properties of the flow field is not solved
directly, LBE method avoids solving the Poisson equa-
tion, which proves to be numerically difficult in most
finite difference methods. Third, the macroscopic
properties are obtained from the microscopic particle
distributions through simple arithmetic integration.
Interested readers seeking further information on LBE
are referred to a recent review.®

2.1 The Governing Equations

LBE method consists of two primary steps. The
particles first stream to its next nearest neighbor in
the direction of its prescribed velocity. Subsequently,
particles of different velocities arriving at the same
node interacts with each other by relaxing to its local
equilibrium values which are formulated specifically
to recover the low Mach number limit of the Navier-
Stokes equation. The evolution of the non-dimensional
distribution function f, is thus governed by:

fa(x +eq0,t +0) — fa(x,t) = %[fgq(xat) = fa(x,1)],

a=0,1,---,18 (1)

where 7 is the relaxation time, f&? is the equilibrium
distribution function and e, is the particle speed in
«a direction. The characteristic speed is thus ¢ =
€,0/d = |ey|. Rest particles of type 0 with eg = 0
are also allowed. Note that the time step and the lat-
tice spacing each have equal spacing of unity. Thus,
=1

In principle, there are an infinite number of possible
velocity directions in the 3D velocity space. Discretiz-
ing these infinite number of velocity directions into a
fixed set of velocity directions inevitably introduces
discretization errors to the solution. As a general rule,
the accuracy of the model to simulate Navier-Stokes
flow comes at the expense of increasing computational
cost resulting from the number of discrete velocities
used in the model. Frisch et al”" have shown that
the Navier-Stokes equation cannot be recovered unless
sufficient discrete velocities is used to ensure lattice
symmetry.

There are various 3D cubic lattice models devel-
oped, most notably the 15-bit (D315), 19-bit(D3Q19),
and 27-bit(D3Q27) model " Here, using common no-
tations in scientific literatures, D is the number of

2 oF A



dimensions and Q is the number of discrete velocities.
A variant model can be derived from each model by
removing the rest particle, resulting in models D3Q14,
D3Q18, and D3Q26. There models are used less fre-
quently because LBE models with a rest velocity gen-
erally have better computational stability. In previous
numerical simulations of a square duct, a lid-driven
cavity and a circular pipe,? no significant improve-
ment in accuracy is observed when the D3Q27 model
was used over the D3Q19 model, and thus, the D3Q19
model is assumed to be sufficiently accurate for the
current purpose.
The 19-bit velocity field (Fig. [) is:

(0,0,0)

for a = 0, rest particle,

((:t17 07 0)7 (07 :|:17 0)7 (07 07 il))c
fora=1,2,---,6, class I links,
((£1,41,0), (0, +1,£1), (£1,0,+1))v/2¢
fora =7,8,---,18, class II links.
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Here, f&% is given by the following form:
3(eq-u)  9(ey-u)? 3u?
o = wep[l + 2ty a 50—2] C)
where
% a=0
we =% 15 a=12,---6
L a="1,8,---,18.

w
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The macroscopic properties of the flow field can be
obtained by integrating the distribution functions over
the velocity space:

pZZfa (4)

pu = Zeafaa
a

where p is the density and u is the velocity. All macro-
scopic properties are obtained as function of space and
time from this integration.

The Navier-Stokes mass and momentum equations
are obtained by using the BGK single relaxation time

a=0,1,..,18 (5)

model™ and by employing Chapman-Enskog on Eq.
&) are:
Op  Opu; _
a 8@ =0 (6)
O(p ui) | Opuiu; _ d(cip) 4 92vpSi; M)
ot 8.’[:]' n ox; Oxj

Here, repeated indices indicate summation and
Sij = (01;/0x; + Ouj/Bx;) is the strain-rate tensor.
The non-dimensional pressure is given by the con-
stant temperature ideal gas equation of state p = ¢2p
where c; is the speed of sound with (c; = ¢/v/3), and
v = [(27 — 1)/6] is the kinematic viscosity.

2.2 Subgrid Model

In this study, a LES version of the LBE model is
developed for application to high-Re flows. Spatial
filtering reduces the high wave number Fourier com-
ponents of the particle distribution and separates the
resolved scale parts from the unresolved scales. For
high Reynolds flow, LES is accomplished by solving
the “filtered” form of the LBE equation (LBELES):

1

fa(x+ead,t+8) — fa(x,t) = —[fa"(x,t) = fa(x,1)]

Tsg
a=0,1,---,18 (8)

where the distribution function f, represents only
those of the resolved scales. The effect of the unre-
solved scale motion is modelled through an effective
collision term. The form of the subgrid correction is
not fully explored at present. In conventional LES
models based on the one-equation model for the sub-
grid kinetic energy™ have proven quite robust. How-
ever, a more simpler model based on an algebraic
representation of the eddy viscosity model (based on
the Smagorinsky’s eddy viscosity model) is adopted
for the present effort. Using this model, the effective
viscosity is obtained as follows:
27g95 — 1

I/+I/T:T 9)

with the eddy viscosity v, determined using:
v, = C,A°S (10)

where C, is the Smagorinsky constant, A =
(AszAZ)% is the associated length scale and S =
|S_ljs_lj| Here, S_” = %(8@1/837, + 611_]/816'@) is the
resolved-scale rate-of-strain tensor is the characteris-
tic filtered rate of strain tensor.

The Smagorinsky constant C, is determined using
the localized dynamic model (LDM)%%4 which was
developed for the k-equation model but now adapted
to the Smagorinsky model. The LDM is formulated
based on the assumption of scale similarity in the in-
ertial subrange. Provided that enough of the inertial
subrange is resolved, stresses at the cutoff (i.e., the grid
size) can be related to stresses at say, twice the cutoff
(i.e., the test filter width). This then defines a scale
level where explicit filtering is required. The test-scale
field is constructed from the grid-scale field by apply-
ing a test filter which is characterized by A (typically,
A = 2A with A the characteristic grid size). In the
following, the application of the test filter on a vari-
able ¢ is denoted by ¢ and thg\test—scale Favre-filtered
variable is denoted by (¢) = pd/p.

C,, is obtained using

L. M;;
C, = Y 11
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where L;] = Lz’j - %ﬁkt“tézj and Mij =
—pVEtA((Sij) — §(Skk)8ij)- Here, Lij = p({dsds) —
(;){1;)) is the Leonard stress tensor and k'¢s' =
L((uapij) — (d;)(u;)) = 1Lk /p is the resolved kinetic
energy at the test-filter level.

As noted later, the algebraic model has some inher-
ent limitations in conventional LES and these limita-
tions remain in effect in the LBE-LES approach. Thus,
for high Re flows, the lattice resolution has to be con-
siderable since the algebraic model requires that nearly
all of the inertial range is resolved. The alternate one-
equation model®® has the ability to deal with high-Re
flows on relatively coarse grid and therefore, we will
be implementing this option in the near future.

2.3 Boundary Conditions

The accuracy of the LBE and LBE-LES models de-
pend strongly on the proper implementation of the
boundary conditions. This is particularly true for
complex geometries. In general, the most problematic
boundary condition is the no-slip condition. The most
commonly used method to apply a no-slip boundary
condition is the particle bounce-back scheme, that is,
the particles arriving at the stationary wall is reflected
back in the direction it came from. Although easy to
implement, the exact location of the no-slip wall is in
question. The bounce-back scheme exhibited second-
order accuracy only when the no-slip wall is placed at
exactly halfway between the boundary node and the
first fluid node in numerical simulations of Poiseuille
flow using the D2Q9 and D3Q15 models“* Since more
discrete velocity links (19) are used in the 3D model,
the boundaries are required to be as accurate in the
present study. In any case, the error associated with
the wall location cannot be larger than the grid size,
and by grid clustering near the wall boundaries, this
error is minimized.

These boundary conditions were originally devel-
oped for the D2Q6 model % and were later adapted to
the present D3Q19 model“® Adaptation is necessary
because additional rules are needed to solve for the
unknown incoming populations for models with more
numerous links then the D2Q6 model. In particular,
at the end of the streaming step and prior to the col-
lision, populations of the outward pointing links and
those which run parallel to the boundary surface are
known whereas the inward pointing ones are unknown.
Thus, bounce-back prescribes provisional populations
for the inward pointing links and therefore, the density
p at that node is defined. By doing so zero normal mo-
mentum is achieved. Subsequently, the net tangential
momentum at the surface is redistributed to the un-
known links which have a tangential component. For
velocity boundaries, populations are either added or
redistributed to the unknown links to yield the pre-
scribed velocity.

Maier et al*® have noted that certain wall geome-

tries (e.g. convex edge and convex corner) cannot
satisfy the no-slip condition under this scheme be-
cause there are insufficient unknown populations to
define such a condition, resulting in curved instead of
sharp-edged boundary. For sharp-orifice type prob-
lems (which are the primary focus of the present
study), the shear layer formed downstream of the jet
plane is sensitive to the sharpness at the orifice edges.
To recover sharp orifice effect accurately, a new treat-
ment is proposed for these boundary nodes. No-slip is
achieved by averaging and redistributing the popula-
tions of known opposite link pairs. This new treatment
(for the known links) in conjunction with the bounce-
back scheme (which solves for the unknown links) elim-
inates all net momentum contribution of all opposite
links pairs while preserving the total population at the
boundary node. Specific examples on how this scheme
is applied to no-slip walls of different orientation are
presented in the Appendix A.

3 Numerical Implementation

There are some specific issues that need to be ad-
dressed before LBE-LES can be implemented to study
the flows of interest. These implementation issues are
discussed here.

3.1 Lattice Stretching

Since f, are continuous distribution functions, lat-
tice stretching is possible in LBE-LES. He et al'4‘
proposed a new Interpolation Supplemented Lattice-
Boltzmann Equation (ISLBE) for nonuniform mesh
grids. Analysis of the new algorithm scheme has
shown that as long as second-order interpolation is
employed and the flow domain is appropriately dis-
cretized, the overall scheme maintains good (second-
order) accuracy while exhibiting improved numerical
stability 2“4 Stretching has the obvious advantage of
allowing a finer lattice in regions of high shear and
coarser grid in region of lesser importance. In this
study, the ISLBE method is implemented using the
Lagrangian upwind quadratic interpolation method.

It was also determined in the earlier study“? that
very large stretching of the lattice results in an effec-
tive increase in the numerical dissipation which may
degrade accuracy. Therefore, the stretching factor
and the associated loss in accuracy need to be bal-
anced. Results here suggest that stretching below 10%
is reasonable and can be used without compromising
accuracy.

3.2 Inflow Turbulence

To simulate high Reynolds number jet, realistic in-
flow condition must be prescribed at the inlet. Obvi-
ously, the inflow domain is a truncation of the entire
length of the pipe which represents the source of the
jet because it is impossible to simulate the entire inflow
domain with available computational resources. Note
that, in all the simulations here, the actual conditions
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at the jet exit plane is not modeled since it is part of
the simulation domain.

To simulate a fully developed turbulent inflow, tur-
bulence is synthesized by a method similar to that
of Lee et al® The resulting velocity field is nearly
Gaussian, conforms to a specified energy spectrum, has
a pre-specified turbulence intensity, is divergence free
and is non-periodic in time.

For the square jet explicit coherent forcing is also
implemented. This is described below.

3.3 The Square Jet and Jet in Crossflow

The forced square jet investigated here is similar to
the configuration studied earlier numerically and ex-
perimentally =1 The inflow jet profile is:

U(t, Zz, y) = wianOW (CL’, y) + Awinﬂ()w (SL’, y)‘%n(wtt)

+ Vp(t,x,y) (12)
where wj; ., 1S the prescribed inflow velocity profile,
Awipflow the forcing amplitude and V, the synthe-
sized turbulence. The w;,q,y, profile is parabolic with
a boundary layer thickness of 0.85D, with respect the
flat sides of the pipe where D, is the equivalent di-
ameter of the square pipe. The other flow parameters
such as the Reynolds number, Strouhal number and
streamwise velocity fluctuation intensity, etc. are all
also chosen to match experimental data.'?

The jet in crossflow test conditions were also chosen
to match a recent set of experiments® More details
are given below.

3.4 Grid Resolution and Numerical Stability

For LES, a key issue is that the numerical dissipa-
tion of the scheme needs to be smaller than the subgrid
dissipation. In addition, the subgrid model needs to
provide adequate dissipation when the resolution is in-
sufficient to resolve all scales. Thus, the choice of the
subgrid model then becomes critical. With the dy-
namic Smagorinsky’s model employed here, relatively
high resolution is still needed since this model implic-
itly assumes that production and dissipation of kinetic
energy is in equilibrium at the unresolved (i.e., subgrid
scales). However, this assumption is only valid when
the grid resolution is fine enough to allow the cutoff to
occur in dissipation scales. This requirement implies
that very high grid resolution will be needed when high
Re flows have to be simulated. It is expected, that the
use of the ksz5 based LDM model*** has the ability
to capture higher Re flows with coarser grid since the
equilibrium assumption is not needed and hence, the
cutoff can be in the inertial range.

Another general observation is that for a given Re
the lattice resolution has to be larger than the equiva-
lent finite-volume resolution if the stretching has to be
minimized (note that in the non-dimensional form the
minimum lattice size is unity). However, the LBE-LES
is computationally much more efficient and therefore,
this increase in resolution is not a major hinderance.

3.5 Parallel Implementation and Performance

To expedite the turn around time, the LBE-LES
solver is implemented in parallel on distributed mem-
ory parallel processing computers using the Message
Passing Interface (MPI). The computational domain
is decomposed into smaller sub domains. Optimiza-
tion requires proper programming of all the boundary
conditions and minimizing message passing overhead.

The parallel LBE-DNS version of the solver exhibits
good scalability as shown in Fig. Bl This data is ob-
tained on the Cray T3E and the result seems to suggest
a super-linear scalability of the solver which seems to
increase as the number of processors exceed 100. Note
that the baseline configuration is 3 processors. The
super linear behavior is attributed to the better use
of cache memory when the computational domain is
divided into smaller equal chunks. Obviously, this per-
formance will be different on alternate MPI machines
with different cache structure.

The computational efficiency of the solver is consid-
erable. For the forced square jet a maximum resolution
of 11 million grid points have been used for the sim-
ulations. On IBB SP4 the LBE-LES solver (with the
localized dynamic option) costs around 4.42 x 10° CPU
seconds per time step per grid point per processor. For
a typical simulation of 20 forcing cycles, approximately
2500 single-processor hours are needed.

4 Results and Discussion

Here, we discuss the square jet and JICF in separate
sections.

4.1 The Square Jet

The dimensions of the square jet computational do-
main are shown in Fig. Bland are similar to the geome-
try of the laboratory experimental jet facility employed
earlier’® except for the fact that the pipe cross section
is circular in the experiments, whereas it is a square in
the present simulation. The equivalent diameter of the
pipe is matched to yield equivalent cross sectional area.
A range of grid resolutions have been used for these
simulations. The base grid resolved the inlet pipe, the
nozzle and the outflow domains using 108 x 108 x 48,
50 x 50 x 6 and 180 x 180 x 108, respectively. The grid
stretched from the high resolution in the orifice region
but the stretching is maintained below 10% to ensure
accuracy is not compromised. A much higher resolu-
tion of 170 x 170 x 52, 66 x 66 x 7 and 202 x 202 x 234
were also employed for the three regions in some of the
simulations. Most of large-scale features are invariant
in both resolution. However, with the finer grid the
stretching could be reduced, the sharp orifice edge is
better resolved, and more finer scale features are re-
solved.

Figure Bl compares v, /v and Q/Q,4, at the same
instance in time at the cross section of the orifice flat
sides. Dissipation regions are maximum in the high
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strain regions that typically reside in the braid regions
and in the regions surrounding the vortices. The spa-
tial variation of the subgrid eddy viscosity in space is
also determined in part by the dynamic evaluation of
the model coefficient.

The visualization of the evolution of the CS is shown
in Fig. The primary vortex structures and the
hairpin vortices are evident in the near field of the exit
plane. However, these CS break down rapidly into fine
scale structures due to shear layer instability generated
by turbulence. Closer examination shows that the jet
undergoes two axis switching in the initial region of jet
growth. Beyond the second location rapid breakdown
of the structures into smaller, 3D randomly oriented
vortices.

Figure [l shows the time-averaged jet half-width
spreading rate in the side and diagonal planes. The
previous simulation using MILES-NS is also shown.
Axis switching is indicated by the cross-over of the
spreading rate of the jet in the two planes. In the
near field region of the jet exit, the profiles of LBE-
LES exhibit more rapid crossovers whereas those of
MILES-NS remain relatively flat within the region
z/D. < 1.0. Comparison with experiments show that
the LBE-LES prediction of axis switching compares
favorably. The vortex structure at the corners are
formed further downstream with respect to the sides.
This triggers the axis switching more quickly (than
a nominally flat velocity profile) since it results in
the formation of non-planar vortex structure. For the
structure formed from a uniform analytic profile (as in
the earlier numerical study), axis switching only occurs
after the vorticity field is sufficiently coherent to invoke
non-uniform induction of the flowfield. This result in-
dicates the importance of capturing the flow dynamics
at the jet exit plane (note that in MILES-NS, inflow
is prescribed at this location). Since the present study
allows for boundary layer growth in the inlet pipe, the
conditions at the exit plane evolve naturally and more
realistically. This lead to a more natural growth and
breakdown of the shear layer structures.

There are some discrepancies as well. The LBE-LES
jet-half width magnitude is lower than in the previous
data. This may suggest a slower spreading of the jet
in the current simulation. The growth rate in the far
field is also slower than the experiment. This may be
due to lattice stretching and a lack of resolution in the
far field. We will revisit this issue at a later stage.

4.2 Jet in Cross-flow

In this study, the experiment of Ajersch et al"™® is
chosen as the benchmark case for validation. The di-
mensions of the computational domain are shown in
Fig. [M The simulation is carried out at Reynolds
number of 4700 based on the jet velocity and the nozzle
width D and at jet-cross-flow velocity ratio of 0.5. The
cross-flow velocity profile is initialized with a bound-

ary layer thickness of 2D. The computational domain
is resolved using 200 x 150 x 100 for the cross-flow do-
main and 50 x 50 x 100 for jet section. So a total of
3.25 x 108 grid points is used to discretize the domain.
Computations for a full simulation (which includes five
flow through times) requires approximately 400 single-
processor hours with 2.3 x 10° memory on the Compagq
SC45 machines. Periodic boundaries are used in the
cross-stream boundaries of the cross-flow domain to
simulate a single square jet out of a row of six used in
the experiment. On the top surface free slip and for
exit surface, outflow conditions has been considered.
The incoming pipe velocity profile with constant value
is prescribed in the pipe a distance of 10D below the
flat plate allowing the flow to develop naturally as the
jet merges into the cross-flow.

Results are compared with the experiment of Ajer-
sch and numerical results obtained by Hoda et al~
Standard k — € model of Lam and Bremhorst,*# high-
Re, k — € model of Launder-Tselepidakis®® and two-
layer turbulence model of Chen®** have been used in
Hoda et al studies. For sake of brevity, we identify ex-
periments, Lam-Bremhorst, Launder-Tselepidakis and
Lattice Boltzmann Equation methods, by EXPR, LB,
LT and LBE, respectively, in the following figures.

4.2.1 Flow features in JICF

Jet in crossflow generates a complex flow topol-
ogy due to the highly 3D nature of this flow. Past
studies have identified two structural features called
horse-shoe (or kidney-shaped) structure and counter
rotating vortex pair (CRVP) (see Fig. B) that form in
this flow. As shown, the current simulation has cap-
tured the entire dynamics of the formation of these
structures and their subsequent breakdown. Figure
shows these features quite clearly. This figure also
shows how jet roles up and create the recirculation re-
gion, which is the important mechanism for mixing of
jet and cross-flow.

Figure @ shows the iso-surface of vorticity struc-
tures in vertical, span-wise and stream-wise direction
(only the positive iso-surface of stream-wise vorticty
is shown). The green iso-surface marks regions in the
flow where |w,| = 0.01, the blue surface marks the
same magnitude for |w,| and the red surface marks
the same magnitude for |w,|. These structure have
been called, hanging vortices (w,), span-wise rollers
(wy) and vertical streaks (w, ).

For example, the hanging vortices are tube-like
structures that form directly above the exit on the lat-
eral edges of the jet and extending around the jet body
and then up along the lee-side of the jet approximately
matching the path of the jet. These tubes coincide
with the location where the jet shear layer fold thereby
emanating vortices, which eventually contribute to the
circulation of the counter-rotating vortex pair (CVP).

Figure [0 shows two sets of instantaneous stream-
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lines. One set originates within the jet, and the second
set originates from the crossflow boundary layer up-
stream of the jet exit. These lines also collect in the
hanging vortex. The vorticity carried by the hanging
vortex provides the circulation necessary to create the
CVP. The CVP changes position and strength with
time and streamwise location.

4.2.2  Comparison with experiments

The mean stream-wise velocity profile comparisons
are presented at various stream-wise stations (z/D =
0,1,3,5) along the jet center plane (y/D = 0) in Fig.
M The exit plane velocity is well captured by LBE-
LES and the reverse flow at /D = 1 is also captured,
albeit smaller in size. Further downstream the bound-
ary reattach and continues to grow. In general, all
methods (past and current) show reasonable agree-
ment.

Figure [[A shows the mean stream-wise velocity pro-
files at different stream-wise locations but along the
edge of the jet (y/D = —0.5). Since there is no direct
interaction between jet and cross-flow at the edges,
cross-flow deflection is less compared to the deflection
at the center plane. Reverse flow is not seen at this
plane and this agrees with experimental data.

The mean wall-normal velocity profiles along the jet
center plane and along the jet edge are shown in Figs.
3 and Fig. M4 respectively. The agreement is good
in the jet exit and close to the orifice. However, it
deteriorates further downstream even though the over
trends are captured reasonably well.

Other mean flow properties show similar qualitative
and quantitative agreement with experimental data.
The scatter between the various methods is not signif-
icant to determine which method is superior. However,
it can be noted that the LBE-LES model gives a re-
liable prediction of this flow at all locations, thereby
establishing its viability.

Turbulent kinetic energy (TKE) profiles at the jet
center plane are shown in Fig. [ According to Hoda
et al™ TKE is produced not only during interac-
tion between the crossflow boundary layer and the jet
but also due to various velocity gradients and strong
streamline curvature. Peak of TKE profile is located
at the same location of maximum velocity gradients.
TKE is larger at the top of the jet where the interac-
tions are dominant (see discussion on coherent struc-
tures above). Comparison (not shown) of turbulence
fluctuation intensity in the stream-wise (Upms/W;)
and wall-normal (wypms/W;) directions shows that
these fluctuation levels are similar in magnitude but
that there are significant anisotropy in the near-wall
region. This is to be expected since in this region vor-
tical breakdown occurs in a complex 3D manner.

Finally, Fig. [[6 shows the normalized shear stress
(UrmsWrms/W;) profiles along the centerline. Al-
though the general trend is similar to the experiment,

the LES-LBE predictions are significantly larger in
many regions. In general, the Reynolds stress predic-
tion in highly separated flow regions is very difficult
and the Smagorinsky’s model used here is not very
reliable in such regions (with and without the local-
ized dynamic evaluation). It is expected that improved
predictions will be possible for all properties once the
LBE-LES approach is extended to use the subgrid ki-
netic energy closure®¥ This effort is underway and
will be reported soon.

5 Conclusions

A new LES implementation of the Lattice Boltz-
mann Equation method is developed and used to sim-
ulate 3D square jet and a 3D square jet in cross-flow.
A localized dynamic subgrid closure using the alge-
braic eddy viscosity model is used to close the LES
version of the LBE model. The configurations and test
conditions are chosen to compare with data wherever
possible. In these simulations the inflow is applied far
upstream of the jet exit plane and this allows the jet
exit profile to evolve naturally.

Simulation of the square jet shows that the shed co-
herent structures undergo multiple axis switching in
the jet increasing the effective mixing. The locations
and the overall growth rate are in good agreement with
measurement. JICF results were also compared with
data and with other numerical method results. Good
agreement with data is again obtained in the present
study. These results establish LBE-LES as an alter-
nate method for simulating turbulent shear flows. The
strengths and limitations of the LBE-LES are also dis-
cussed.
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Appendix: Boundary Conditions

Here, specific examples on the implementation of
the various boundary conditions used are given. The
convention of the link vectors used in the examples is
illustrated in Figure [l and their surface orientations in
Figure [

For the planar node, if a normal velocity wy, is pre-
scribed, the tangential momentums of the parallel links
and the density are:

Utan = (f1 + fr + fo) — (fo + fs + fi0)

Vian = (f3 + fr + f10) = (fa + fs + fo)
p=Qfs+fiet+fis+fie+tfirt+fotfi+fot+fa+
fo+ fr+ fa+ fo+ fio) /(1 — wye).

The unknown populations are:
fs = fo + pwpc
fi11 = fi2 — 0.5u44n
fia = fi13 + 0.5usan
fis = fi6 — 0.5v¢an
fi8 = fir + 0.5v¢an.

For nodes on concave edge, the tangential momen-
tum is: V4, = f3 — f4 and the unknowns:
fi=f2, f5 = fo, f11 = fr2
f7 = f8 — 0.25v¢0p
fo = f10 + 0.250¢4n
fis = fi6 — 0.25v4an
fis = fir + 0.25v44p.

The buried links (links that do not participate in
streaming but in collision) are averaged and redis-
tributed: fiz = fia = 0.5(f13 + f14)-

For the concave corner, all the class I links exist in
known/unknown pairs, and thus:

h=f,fs=f,fs=f =1
fiu1 = fi2, fis = fi6

fo = f1o = 0.5(fo + f10)

fiz = fia = 0.5(f13 + f14)

fir = fis = 0.5(f17 + fis).

Earlier studies® pointed out that convex edges
and convex corners cannot satisfy the no-slip condi-
tion with this scheme because there are insufficient
unknown populations (at least one class I link) at
these boundaries. New treatments are devised for
these boundaries, and the no-slip condition is en-
forced by modifying the known populations, as well
as the unknowns. In short, the unknown populations
are computed using bounce-back and the known non-
parallel populations of opposite links averaged and
redistributed. Subsequently, the momentum of the
parallel links is redistributed to the non-parallel pairs.
With this method, the total population of the known
links is preserved. For the geometry in Figure I
f11 = fi2 and v, = f3 — f1. The others are:
fi = f2=05(f1+ fo)
fs = fe = 0.5(fs + fo)
f13 = f1a = 0.5(f13 + f14)
fr =0.5(f7 + fs) — 0.125v44,
fs = 0.5(f7 + f3) + 0.125v445,
fQ = 05(f9 + flO) + 0.125v¢41,
flO = 05(f9 + flO) —0.125v445
fis = 0.5(f15 + f16) — 0.125v44p
fi6 = 0.5(f15 + fi6) + 0.125v44,
fir = 0.5(f17 + fls) — 0.125v44p
f1s8 = 0.5(f17 + f1s) + 0.125v44p.

For the convex corner, there are no unknowns and
therefore, all the opposite link pairs are averaged and
redistributed.

For the symmetric boundary condition, the un-
known populations beyond the plane of symmetry are
needed during streaming. Thus, the outgoing popu-
lations are reflected back into the domain exactly the
opposite way they leave. For the geometry in Figure
A using k to denote the known outgoing populations
at the ¢ plane and uk to denote the incoming unknowns

at 7+ 1:

wkyitl ki
> =f
wkyitl ki
Shitl ek
UR, T 1
w0 =fr

uk,itl _ ki
12 = Ji3

uk,itl _ ki
14 =Ji1 -
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Fig. 5
ing cycle. Isosurface of the vorticity magnitude at
temporal intervals of wt = /2 are shown.

Square jet flow evolution over two forc-
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Fig. 6 Axial evolution of the jet half~width. The
current LBE-LES and the earlier numerical result
are compared with experimental data.
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Fig. 7 Geometry and computational domain for
the jet in crossflow.

Fig. 8 Instantaneous vorticity magnitude iso-
surface |w| = 0.003 super-imposed by vertical vor-
ticity as a scalar. Contours of span-wise vorticity
are in gray color. Horse-shoe structure (near the
wall) and CRVP (following the jet trajectory) are
observed.
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Fig. 11 Mean stream-wise velocity profiles (U/W;)along the jet center plane (y/D=0) at z/D=0,1,3,5
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Fig. 12 Mean stream-wise velocity profiles (U/W;)along the jet edge plane (y/D=-0.5) at z/D=0,1,3,5
from the jet center.
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Fig. 13 Mean wall-normal velocity profiles (W/W;)along the jet center plane (y/D=0) at z/D=0,1,3,5
from the jet center.
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Fig. 14 Mean wall-normal velocity profiles (W/W;)along the jet edge plane (y/D=-0.5) at z/D=0,1,3,5
from the jet center.
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Fig. 16 Turbulence shear stress uw/VV]? profiles along the jet edge plane (y/D=0) at z/D=0,1,3,5 from
the jet center.
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