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Accurate prediction of pollutant emission from com-
bustion devices requires a comprehensive numerical
model that can predict not only the unsteady flame
structure and propagation characteristics but also pol-
lutant formation. Although flame-turbulence interac-
tions and its effect can be studied using simplified
models (e.g., thin-flame), prediction of emission re-
quires detailed finite-rate kinetics. Since chemical ki-
netics are stiff in time, techniques that can speedup
the computations are critically needed. Here, the use
of Artificial Neural Network (ANN) for efficient stor-
age and retrieval of chemical composition in a LES, is
explored.

Introduction

Production of pollutants such as carbon monox-
ide (CO) and oxides of nitrogen (NO, in combustion
devices (e.g., gas turbine and internal combustion en-
gines) is becoming a serious concern for environmental
reasons and therefore, methods to suppress or elim-
inate these emissions are being explored. Since, in
most experimental cases emission measurements are
extractive, the details of when and why combustion
process produces CO and NO cannot be directly de-
termined. An accurate simulation methodology, if
it exists, would go a long way towards helping the
design on next generation low-emission combustors
by providing insight into the combustion process, in-
cluding pollutant formation. Although computational
methodology based on large-eddy simulation (LES)
has been demonstrated recently as an effective tool
to study flame-turbulence interactions,'™ the ability
to predict multiple chemical species formation in the
combustor is still constrained by the computational
cost required to track all these species in both space
and time. Spatio-temporal resolution of all chemical
species in a combustor device operating under real con-
ditions is beyond the current and future processing
capability even when massively parallel systems are
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employed for the simulation.

Therefore, various methodologies are being devel-
oped and explored to reduce the cost of computing
multi-component species. Methods based on flamelet
library,® Intrinsic Low Dimension Manifold (ILDM),%
look-up table (LUT),” and In-Situ Adaptive Tabula-
tion (ISAT)® have been demonstrated in steady-state
Reynolds Averaged Navier-Stokes (RANS) models.
More recently, some of these methods have been also
used in both time-accurate DNS and LES approaches.
The computational efficiency, the accuracy and the
ability of these methods are obviously limited by the
inherent assumptions used to develop these models. At
this time, no method has proven universal for general
purpose application.

Here, we are interested in developing a computa-
tionally efficient method to simulate detailed chemical
kinetics in DNS/LES methodologies. In order to do
this, a key feature has to be explicitly addressed. For
example, in both DNS and LES multiple flow-through-
time (7) of the flow is simulated to obtain data for
reliable stationary statistics. At the minimum, at least
2-37 is needed (after the initial transients, typically, 1-
27, are washed out) to obtain reliable first moment
statistics but additional 2 — 37 may be needed to ob-
tain second and higher-order statistics. Therefore, the
computational cost of DNS or LES is primarily related
to the total number of 7 that is needed to address the
issue(s) of interest.

From the chemical kinetics calculation point of view
after the first 2-37 the flow field should (in the mean)
settle down and therefore, the accessed composition
space should be well established. Therefore, a method-
ology that stores the composition during the initial
stage of evolution and then retrieves this composition
during subsequent flow through times should drasti-
cally reduce the overall computational cost. Methods
that employ direct lookup,”® ISAT® or ANNs'0-14 all
have potential for providing computational speedup.
Recent studies!® suggest that although ISAT speeds
up the chemical species evaluation by a factor of 30-50
(over direct integration), the ISAT table continues to
grow (via direct integration) during multiple 7 simu-
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lation and can cause potential local memory problems
in parallel system.

ANN has been demonstrated as an alternative
method to store and retrieve the thermo-chemical state
during the simulation. In the past, ANNs have been
successfully used in complex system modeling in the
fields of electrical engineering and computer engineer-
ing, noise and image data pattern recognition, nonlin-
ear controls and forecasting.'® In combustion related
applications, several ANN models have been used in
the past. Chemical changes over time for a Hy/COs
turbulent diffusion flame are predicted using ANN
models in a velocity-scalar joint pdf equation model.!?
The simulations have shown good predictions of the
flow field and the flame characteristics, when compared
to the conventional DI and LUT approaches. The sen-
sitivity and quality of the results to the ANN param-
eters (number of neurons) is also discussed. Another
integrated PDF /neural network approach by Christo
et al.'® for a simple one-step chemical reaction has
been performed for a non-premixed turbulent flame
simulation. Optimized techniques for generating train-
ing sets for the networks are discussed.

Blasco et al.'? demonstrated the use of multiple
ANNs for simulating the temporal evolution of re-
active scalars using a reduced methane-air chemical
model involving a four step chemical mechanism with
eight species.!” Multiple ANNs for the prediction of
scalars and density and temperature were employed
and detailed analysis of the resultant network error
was reported. In a later study,'® the time step was
included as an input to the network for modeling, and
the ANNs was subdivided on the basis of the accessed
compositional domain. The advantage of doing so
is in the increased sensitivity of the network output,
and the resultant outputs, which are more accurate.
Chen et al'* implemented ANNs using input data
for the compositional domain from precalculated ISAT
records. The argument is that since ISAT is a better
representation of the accessed compositional domain
for a reactive system, an ANN trained on such a ta-
ble will perform with better accuracy. The ANNs were
tested in an online partially-stirred reactor calculation.
The tremendous advantage of ANN in terms of storage
and speedups is demonstrated in this research.

More recently, Kapoor et al.'® demonstrated the
use of multiple ANNs for a 15-step, 19-species C'Hy-
air mechanism in a simulation of turbulence-chemistry
interactions in the thin-reaction and the flamelet
regimes. ANN predictions seem to predict well the
flame-broadening effect due to the interaction of small
eddies with the flame, as observed in previous work.'?
Later studies!? also demonstrated the viability of using
multiple ANNs to predict outside of the composition
domain in which each had been originally trained.

The major advantage of an ANN structure is in
terms of the tremendous reductions in CPU times (as

opposed to direct integration methods) and disk stor-
age (as opposed to the conventional search/retrieve
algorithms). The choice of the correct ANN variables
and structure, however, is a critical factor that de-
fines the efficiency and accuracy of the resulting ANN.
Furthermore, the true test of the accuracy and ef-
ficiency of the ANNs can only be accomplished by
employing them in actual multi-dimensional simula-
tions using DNS and/or LES. In this paper, we discuss
the development and application of ANNs for multi-
step, multi-species mechanisms. Application of these
mechanisms in DNS/LES of flame-turbulence interac-
tions is demonstrated, and the accuracy and efficiency
of the ANN approach is determined.

Artificial Neural Network Structure

An ANN structure, by definition, is a structure of
several interconnected nonlinear elements, which func-
tions like biological neurons with an ability to learn
from a set of input-output parameter space it is sub-
jected to, and then, predict the output for a new
sample set with a sufficient level of accuracy.'® The in-
formation in a network is stored in the form of weights
and biases (or neurons), which are computed itera-
tively in the learning phase of the network training.

The inherent capabilities of ANN to model highly
complex nonlinear processes makes it a suitable choice
to model nonlinear behaviors of temperature and
species concentrations in a chemical reaction. There
are several training and learning algorithms present
in literature, with the option of one or more than
one layer of neurons in the network for the same. In
general, a perceptron learning rule is favored for our
applications, since it is generally robust in its ability
to generalize from its training vectors and learn from
initially randomly distributed connections.?®

Mathematically, the output for a multi-layer percep-
tron (MLP) network can be represented as :

i=1,..,nfl)

ij

nL
Yi=F ZwLOJI-fl—i-ﬂiL for
j=1

where VX is the output of the ith neuron of the
Lth layer, w{; represents the weight value for the con-
necting jth neuron of the (L-1)th layer and the ith
neuron of the Lth layer, 87 is the bias value, ny, is
the total number of neurons in the Lth layer, and F is
the transfer function. Hyperbolic-tangent function is
used as the transfer function most commonly. Figure
1 shows the typical layout of a three layer neural net-
work, that has been used significantly in the current
work.

The accuracy of the obtained network when used in
an online chemistry simulation problem, depends crit-
ically on several pre-processing aspects of the network.
These are summarized as follows :
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e The generation of an initial data set for training
the network: This is the most important step in
the generation of a useful network for computa-
tions. The data bank to be used for the training
should ensure that it completely covers the ac-
cessed compositional space it will encounter.

Preconditioning of the training data set for opti-
mal performance: In order to have better network
behavior, three different pre-processing steps are
followed:

— Re-scale the variables to achieve zero mean
and unit variance,

2= 2T (2)

O,

i

here z; is the value of the input/output vari-
able i (species mass fraction or temperature)
and Z; and o,, are respectively, the mean
and variance of the input/output variable i.

— Re-arrange the input/output sets to fall in
the [-1,1] interval. The normalized [-1,1]
range has proven to be an optimized range
for the ANN training. Thus, a linear trans-
formation has been applied to the initial
data-set so as to allow it to fall in the above
mentioned range.

2 =142 x; — min(z;)

3)

maz(z;) — min(z;)

here maz(z;) and min(z;) denote the maxi-
mum and minimum of the standardized val-
ues of input (or output) ¢ within the training-
set data, respectively.

— Apply appropriate transformation to the
training set to make the training surface
well-behaved. This is particularly impor-
tant in highly temperature sensitive regions
where small changes in temperature can re-
sult in large production of short-lived rad-
icals. In order for ANNs to predict the
chemical state such rapid variations must be
included properly. Here, logarithmic and lin-
ear transformations are employed.

e The training of the network using a suitable neu-
ral net algorithm: In the present work, a multi
layer perceptron (MLP) is chosen for the net-
work. It is a supervised, feed-forward neural
network, with the architecture described by Eq.
1. Two kinds of learning algorithms have been
incorporated: a three-layer scaled conjugate gra-
dient (SCG) back-propagation network?®2! and
the more popular Levenberg-Marquardt back-
propagation network.2% 22

e The generation of a validation data set to check
the accuracy of the final ANN for sample points
not used in the training: The obtained network is
tested for accuracy for not only the points it has
been trained for but also for the unknown points
that exhibit patterns similar to the trained input-
output sets.

e The incorporation of the ANN in a real computa-
tional simulation: The application of ANNs into
a DNS/LES study is the final test of its ability
to reproduce the temporal evolution of a chemi-
cal system. The accrual of local error after every

time step is estimated to quantify the accuracy of
the ANNGs.

Results and Discussion

Here, we discuss two applications of the ANNs. Ap-
plication where the ANNs were used primarily to pro-
vide the chemical composition for a given input state is
denoted Laminar ANN (LANN) whereas, ANNs which
includes turbulent field in addition to the chemical
composition is denoted Turbulent ANN (TANN). The
applicability of these types of ANNs is discussed be-
low.

Laminar Artificial Neural Network (LANN)

For the present study, only methane-air mechanisms
are employed and ANNs are generated for single-step
and multi-step finite-rate mechanisms.

Global single-step kinetics

A single-step global mechanism proposed by
Westbrook and Dryer?® involving five species
(CH4,02,C045,H50 and N) is used to develop the
simplest LANN. The temporal evolution of any
reactive scalar y; is given in the form

dyi

dt
The energy equation can also be written in a simi-
lar fashion for the temporal variation of temperature.
At present, the time step of the simulations is kept
constant in the LANN. Each of the data-set for the
training and generation of the laminar nets is pre-
processed, as discussed in the previous section. Af-
ter performing the logarithmic transformations, the
data-sets are discretized into different bins based on
the input temperature. Each ANN is a three-layer
Levenberg-Marquardt back-propagation network, with
the number of neurons varying between 15 to 30 in the
two hidden layers. The choice of the number of lay-
ers and number of neurons in each layer is an open
question, and in the present study has been optimized
iteratively. Tan-sigmoid activation functions are used
for the hidden layers, and a purely linear activation
function for the output layer is employed.

= wi(y,T, P) (4)
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Each of the ANN for each of the reactive scalars in
a particular temperature zone takes the species con-
centrations and temperature as an input, and predicts
the change in the scalar normalized by the time step.
It has been observed that the training provides more
accurate networks with the training output being in-
crements in the reactive scalars rather than with the
final value of the scalars.'® Figure 2 shows the off-line
ANN predictions for CHy and temperature from one
particular temperature regime. As can be seen, the
ANN predicted values are in excellent agreement with
the desired target values.

The 5-species LANN obtained here for ¢=1,
T=300K and P=1 atm, is also used in a 2D-DNS sim-
ulation with a stationary premixed flame-turbulence
interaction. Flame-turbulence studies using detailed
kinetics have been reported in the past?42° in litera-
ture and serves as a test problem here to evaluate the
LANNSs. A two-dimensional domain of size 2.5x2.5 cm
is resolved using a 400 x 400 grid points is chosen for
the simulation. The simulations are performed using a
finite-volume scheme that is nominally second order in
both space and time. A fourth-order accurate version
is also available but is not used at present since the
resolution is sufficient to address the accuracy of the
LANN. Characteristic inflow-outflow boundary condi-
tions?® are used at the inlet and outlet of the domain.
Periodic boundary conditions are imposed on the other
domain boundaries. An inflow velocity is prescribed
equal to the laminar flame speed Si. A fluctuating
isotropic turbulent field with an intensity u', gener-
ated based on a prescribed energy spectrum?? also is
initialized. For the conditions simulated here, S;, = 40
cm/s and v’ = 1.77 m/s, and thus, «'/St, = 4.4 which
indicates that flame is in the flamelet regime.

Figure 3 show some instantaneous results obtained
from the LANN predictions. Figure 4 shows the 1D
time-averaged profiles in the middle plane from these
simulations. Clearly, both direct integration (DI) and
ANN predictions are in excellent agreement.

Reduced four-step kinetics

A reduced methane-air combustion system!” involv-
ing 8-species (CHy, Ha, O3, H, CO, CO3, H20 and
N») and four steps is next considered. The mecha-
nism is summarized in the Appendix. The method-
ology used earlier is followed for the development
of the neural networks for this mechanism as well.
Each ANN is again a three-layer Levenberg-Marquardt
back-propagation network, with 20-30 neurons in the
two hidden layers. Tan-sigmoid activation functions
are used for the hidden layers, and a purely linear ac-
tivation function for the output layer. Therefore, this
LANN is quite similar to the earlier 5-species LANN,
with the exception of more number of ANNs for each of
the reactive scalars. This is justified, since the mech-
anism is more complicated and involves more number

of species as an input to the ANNs.

A DNS run similar to the one for the 5-species case
is performed and the results compared with DI. Fig-
ure 5 compares instantaneous CO and T contours in
the 2D domain obtained using DI and LANN. The
general shape of the wrinkled shape is nearly identi-
cal under both approaches. There are, however, some
differences. This is highlighted in Figure 6 in which
the time-averaged profiles for some of the scalars are
shown. It is seen that although there is reasonable
agreement, the flame thickness is slightly larger us-
ing LANN and as a result, the temperature is under
predicted in the reaction zone. This impacts the pre-
diction of CO and other species.

Analysis suggests that the LANN output is highly
sensitive for some of the radical and minor species.
This is due to the presence of most of these radicals
in extremely small amount and being hyper-sensitive
to small changes in the local temperature. Also, the
timescales of the radicals are generally much smaller
than for the other species. It was determined that
these discrepancies can be minimized using a simple
change in the setup process. This is demonstrated
below.

Reduced five-step kinetics

A new 9-species mechanism (see Appendix) involv-
ing CH4, Hz, 02, OH, CO, 002, HQO, NO and N2 is
investigated with the modified LANNs. We chose this
mechanism instead of the earlier 8-species because it
also contains NO and thus, with this mechanism we
can investigate the ability of LANNs to predict both
CO and NO. LANNs are built for this mechanism
using the same approach as in the previous section
with the exception that different transformation func-
tions are used for different scalars. As reported above,
some of the species reaction rate, which are used as
an output for training, are highly sensitive to tem-
perature changes in certain temperature regimes and
insensitive in the others (see Figure 7(a)). To bring
this effect into the ANN development we employ differ-
ent transformations for different species, and in some
cases, in different temperature range. For most of the
major species, the logarithmic transformation is still
employed (see Figure 7(b)) but for some of the minor
species, such as CO and NO, we employ linear trans-
formations in some of the non-active temperature bins.

Figure 8 show the time-averaged profiles for some
of the scalars as predicted using the new LANNs and
compared against the DI prediction. It can be seen
that the present LANN prediction is now in excellent
agreement with DI results. Figure 9 show the time-
averaged profiles for CO and NO. Again, the results
for this LANN are in excellent agreement with the DI
results.

These results suggest that by proper mapping of the
scalar-temperature space and using appropriate trans-
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formations for preprocessing the network, a better
ANN can be trained. These studies have demonstrated
an approach that can handle both major and minor
species. The computational gain using LANN is dis-
cussed later.

Turbulent Artificial Neural Network (TANN)

The LANN stores only the thermo-chemical compo-
sition at a point for a particular time step. Therefore,
these LANNSs can only be used in a DNS or in a LES
where the subgrid evolution of the chemical species is
closed in an exact manner.'® For conventional LES (or
for that matter, for RANS as well) obtaining the fil-
tered reaction rate is critical for accurate predictions.
However, classical models based on assumed pdfs®®
and eddy break-up?® and eddy dissipation3® closures
have not proven very accurate in predicting pollutant
emission. On the other hand, inclusion of detailed
kinetics without any closure in scalar pdf methods
for RANS and in subgrid linear-eddy model for LES?
have demonstrated that improved predictions can be
achieved when detailed kinetics is employed.

Application of LANNS in the subgrid LES approach®
is currently underway to develop an efficient LES alter-
native for multi-component reacting flows. However,
this approach is expected to be computationally ex-
pensive and therefore, will not be useful for parametric
design studies using the current computer architecture.
An alternate approach, denoted here as Turbulent
ANN (TANN) is discussed below which attempts to
develop a turbulent composition state in the combus-
tor. In TANN, the LANN is combined with another
NN for the turbulent length and velocity scales that
exist locally in the combustion zone. Obviously, this
NN (either independently or combined with LANN)
requires the information on the turbulent fluctuations.
We discuss here an approach under study.

Consider the LES-filtered species equation:

).

opY,, 0
+ 6:1),'

ot ox;

[ﬁffmﬂz - ﬁDm

+ @3 +07] = Wm
©)
The closure of the term in the right-hand-side, w,,
is very problematic. If the local joint scalar-velocity
pdf, P(Y,,,T,p,u', A;z;,t) can be defined, then any
filtered variable can be obtained directly by integra-
tion. Here, u’ and A are respectively, the local subgrid
turbulence intensity and the characteristic eddy size.
We use (u', A) as two parameters to define the subgrid
state at every LES cell. This approach is reasonable
since turbulent fluctuations at a given location increase
mixing due to eddies of characteristic size that ranges
from the LES grid size A to the smallest Kolmogorov
eddy n (thus, n < A < A). Increase in mixing can
increase fine-scale flame wrinkling, thereby increasing
the effective burning rate.
As before, the subgrid kinetic energy is used to

estimate v/l and for the subgrid Reynolds number,
Ren = u'A/v the range of eddies involved in the
subgrid mixing process can be easily determined. In-
ertial range scaling law is employed to determine the
pdf of the eddy size distribution f(I). Then, given
f(), Wy =< 1, > where 1, is the LES filtered
reaction rate (see Equation 5) and < 4, > indi-
cates the reaction rate averaged over the local eddies.
The latter term can be approximated as: < w,, >=
Jwm (1) f(1)dl, where f(l) is the distribution of the
length scales acting at the subgrid level. The key here
is to determine w,, (I) so that effect of different eddies
on the combustion process is included properly. Some
recent results are discussed below.

For a 5-species global mechanism and for ¢=0.6,
T=533K and P=5.1 atm we generate the TANN using
2D DNS simulations of the flame-turbulence interac-
tion model described earlier. Since TANN is to be used
on a coarser grid, the local combustion process in the
DNS can be used to parametrize the local combustion
in eddies of the smallest scales. Simulations were car-
ried out for a range of u' in a range 0 < u'/Sp < 10
which is currently the region of interest. Note that,
we are only interested in accounting for the effect of
the turbulent scales that will be lost when a LES grid
is used. Therefore, at this time we are considering
this flame-turbulence interaction problem as a generic
subgrid domain to develop the training set, and is
assumed to be applicable to all fine-scale premixed
flame-turbulence interactions. Thus, once the TANN
is trained using this data set, then it is considered ap-
plicable in any LES configuration of interest, as long as
the parameter space is similar. However, this assump-
tion remains to be confirmed and will be the focus of
future studies in this arena.

Although this approach is still under development,
preliminary application of the TANN shows promise.
Figure 10 shows instantaneous temperature field for
the DNS (using 353x353 grid points) and the corre-
sponding LES using TANN on a 177x177 grid resolu-
tion. As can be seen from the figures, the TANN is
able to capture the overall flame-turbulence behavior.
There are, however, some details that do not agree and
this will be investigated further in the near future.

Error and Efficiency Estimates

The neural network algorithm is allowed to con-
verge to a sufficient level of tolerance error. Mean
square errors are used to define the overall network
errors between the desired target value and the ANN
predicted values. As has been discussed and demon-
strated in the past,'® convergence is more difficult
to achieve for some of the radicals than the major
species/temperature. For example, the convergence
for the ANN training for a major species or tempera-
ture can be two-three times faster than that for some
of the minor species training.
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From an overall perspective, the ANN proves to be
an excellent competitor to represent finite-rate chem-
istry in a turbulent flame simulation. The major ad-
vantage it has to offer is in terms of the reductions in
the computational cost and memory overhead. Direct
integration approaches are not always feasible, due
to the enormous computational costs involved. For
example, ISAT for the 9-species chemical mechanism
requires around 1004+ MB which has to be stored in
memory to speedup access. Furthermore, as noted
above, ISAT table continues to grow and therefore,
memory allocation has to be dynamic and load bal-
ancing is a serious problem. On the other hand, the
present ANN models (using multiple ANNs for each
species and temperature) requires just around 1-2 MB
of memory at most. This has significant implication
for use within massively parallel systems (especially
PC clusters) where the memory needs to be allocated
to resolve for the flow field rather than for the chemical
state.

Another issue is that ANN implementation is sim-
ple to incorporate as compared to an ISAT algorithm,
involving only a few matrix multiplications and addi-
tions and floating point operations. This can signifi-
cantly reduce not only the memory overheads but also
the overall cost of chemical composition update. Table
1 shows the typical cost of implementing online ANN
as compared to DI methods for the same (comparisons
being performed on Intel Pentium III Xeon, 500-550
MHz machines and for a fixed number of time-steps).
For the single-step mechanism the speedups are higher,
since the complexity of the ANNs is increased for the
multi-step mechanism. Cost reduction is expected to
become more apparent for a larger chemical mecha-
nism and when simulation is performed for multiple
flow through times. This remains to be demonstrated.

Conclusions

Artificial Neural Network has been demonstrated as
a computationally economical tool for the simulation
of scalar evolutions in a chemically reacting mixture.
This has been shown with the aid of global single-
step and reduced multi-step mechanisms. Some key
issues that address the training of ANNs for major
and minor species have been resolved. Application of
the LANNs in DNS/LES flows show that as long as
the parameter space is within the training set for the
LANNS, they perform very well and at a reduced cost.
From memory and storage point of view, ANN may be
also a better alternative when implementing LES on
massively parallel computer clusters. There are some
issues still remaining to be resolved, such as, the need
to generalize and/or automate the training process,
the accuracy when multiple ANNs are used to cover
parameter space outside the training set, etc. How-
ever, these are generalization issues and therefore, can
be resolved.

Finally, as the next step for the modelling of tur-
bulent combustion for engineering applications (i.e.,
to all parametric studies), the incorporation of the
turbulence effects into the ANN structure have been
discussed and demonstrated using TANNs. Present re-
sults obtained using TANNs are still preliminary, but
they serve to validate and extend this concept. Future
studies will incorporate the TANNs for the multi-step
mechanism in a full-scale 3D reacting flow simulation.
These results will be reported in the future.
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Appendix

8-species, 4-Step Reduced C H;-air Mechanism
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CH,+2H + H,0 = CO +4H, (6)
CO+H,0 = CO,+ H,
2H+M <= Hy+M
02 +3H, = 2H+2H,0



Table1l Speedups obtained using ANN [CPU time
per step (sec.)]

DI cost ANN cost Speedup
(x) ) (x/y)

5-species, 1-step 1.50 0.073 20
8-species, 4-step 4.76 0.48 10
9-species, 5-step 4.31 0.37 11

Y1 L Y1l
v »
¥3 L p-® Y3
Y4 }0 Y4
A
Y17 Y17
Y18 P s
Y19 7‘ 77777777 Y19
T }0 T
INPUT OUTPUT
VECTOR LAYER

HIDDEN LAYERS
tan-sigmoidal functions

Fig. 1 A three-layer neural network structure

9-species, 5-Step Reduced C Hi-air Mechanism

40H = 0, +2H,0 (7)
20H +0.33CH, = 1.67H,0+0.33CO
H,+0.33CO < 0.33H,0 + 0.33CH,
Hy +40H +033CO+ N, = 2.33H,0+ 0.33CH,
+2NO
20H +CO = Hy0+CO,
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ANN predictions

ANN predictions

Fig. 2
species, single-step kinetics)

-0.5

0.5

1 " 1

'
=

Target values

b) Temperature

-0.5 0 0.5
Target values
a) CHy
1 T T T T
0.5
0
-0.5
-1 1 N 1 1
- -0.5 0.5

ANN predictions for reactive scalars

(5-



0.06 . T . T . T .
L — DI ]
a4 ANN
5 004 g
£
; ot |
=
& 002 g
0 L | L I A
0 100 200 300 400
Grid pt.
a) Temperature (2116K-300K) a) CHy
2400 . . . ; . ; .
2000 [ por :
L a—a ANN ]
1600 -
£ :
8 1200 - B
8 I ]
g I ]
800 - -
a00[ n
oL : | : I : | . ]
0 100 200 300 400
Grid pt.
b) Density (colored) and vorticity b) Temperature
Fig. 3 Instantaneous flame-turbulence features us- Fig. 4 Time averaged profiles for LANN and DI
ing LANN for single-step kinetics (5-species, single-step kinetics).
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