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A new two-level simulation (TLS) has been developed based on the decomposition
of velocity into resolved and small-scale components. A coupled system of the resolved
and small-scale equation that is not based on an eddy-viscosity type of assumption has
been derived and implemented to simulate very high-Re wall-bounded turbulent flows as
in channel. Results suggest that the baseline TLS model which requires no adjustable
parameters has the potential for capturing turbulent flow behavior in high Re channel

flows using very coarse grids.

Introduction

Simulation of very high Reynolds (Re) number wall-
bounded flows is computationally very expensive be-
cause the near wall region has to be properly resolved
in order to achieve accurate prediction. Past affordable
studies using direct numerical simulations (DNS) have
been limited to relatively low Re (500-2000 based on
wall units).! However, the typical Re associated with
wall-bounded flows of practical interest can be an order
(or more) of magnitude higher. DNS is obviously im-
possible for such flows even with the projected speedup
of the next generation computers and large-eddy sim-
ulations (LES) may be the only viable approach to
study these flows.

The present effort is focused on validating of new
approach for LES of high Re flows that departs sig-
nificantly from conventional methods used in LES.
The present approach is similar to several alternative
approaches (referred loosely here as “decomposition”
approaches) that have emerged in literature recently.
In contrast to LES, where decomposition of turbulent
velocity into two components, resolved and small-scale
(unresolved), is introduced through spatial filtering
and the major effort is concentrated on SGS modelling,
in ”"decomposition” approaches considerable attention
is devoted to modeling of small-scale velocity itself.
This usually involves a derivation of governing equa-
tion for small-scale velocity with its subsequent sim-
plification based on some physical arguments.?™®

Regardless of how scales are decomposed it is ap-
parent that if both the resolved and small scales are
simulated in three dimensions then this approach is no
different than a DNS, and therefore, unviable. In order
to implement this approach within the context of LES,
we have developed a new framework denoted TLS in
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which the resolved scale motion are simulated using
"large-scale’ equations that is forced by the small-scale,
unresolved motion. In TLS approach, the small-scale
velocity field is explicitly reconstructed by solving an
appropriate small-scale equation on a 3D family of
1D grid lines embedded inside the 3D resolved grid.
Constructed in such a way the 3D small-scale veloc-
ity field serves as a closure for the 3D resolved scale
equations. The reduction in dimensionality for the
small-scale equations allows the coupled TLS approach
to be computationally feasible (and efficient on mas-
sively parallel machines) and applicable to high-Re
flow simulations.

In this paper, the mathematical formulation of the
TLS approach is first highlighted and used to simulate
three-dimensional channel flow.

Formulation
Two-scale decomposition

We consider the incompressible Navier-Stokes equa-
tions:
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and split the velocity field into resolved and small-
scale components into resolved and small-scale compo-
nents:

ui(Z,t) = u} (Z,t) + ui(Z,t). (3)

The meaning of the resolved velocity u}(Z, t) is quite
general — it can represent not only the filtered quantity
with respect to some spatial filter but also any resolved
quantity known on the given resolved grid such as vol-
ume averaged velocity, as in finite volume formulation.
The resolved quantity known on the “large” scale grid
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is denoted by [] or superscript . The resolved scale

equation has follgwing form:
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If the small-scale velocity is known the resolved scale
can be found by integrating Eq. (4). The small-scale
equations are obtained by subtracting the resolved
equations from the original Navier-Stokes equations.
This gives:
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A numerical simulation of the above small-scale equa-
tions is quite challenging and will require computa-
tional effort similar to that for a DNS. Therefore, to
model the small-scale turbulent velocity field efficiently
and with a high physical fidelity, the small-scale equa-
tions must be simplified while retaining the underlying
picture of scale interaction. This is described in the
next section.

TLS small-scale model

As mentioned earlier, the full two scale simulation
model is not viable due to DNS comparable resource
requirement. In the light of this, we propose a new
simplified model for reconstructing the small-scale ve-
locity field. In some respect this is consistent with the
framework of the One-Dimensional Turbulence (ODT)
approach originally developed by Kerstein and co-
workers®: 10

In ODT approach, turbulent velocity and other
properties are simulated along one-dimensional line of
sight through a 3D turbulent flow. The reduction to
1D domain makes the model computationally efficient.
However, a correct formulation and implementation of
ODT model, as a closure for subgrid scale fluxes, is not
straightforward and is still an area of active research.!!
The baseline ODT model has a disadvantage since it
is not able to take into account the effects of resolved
velocity on the modeled small-scale velocity field, thus
somewhat hindering a forward energy cascade picture.
Here, the proposed model automatically addresses this
issue.

To make the small-scale equation more suitable for
an efficient numerical simulations it is natural to intro-
duce two time coordinates in velocity decomposition
equation such that:

ui(i':t) = ui(.’Z',tT;ts) = u;‘('fiatr) + uz.?('i'atr;ts)' (7)

Here, we assumed that the resolved velocity does not
depend on the small-scale time coordinate t* thus it is
treated as a “slow” variable, i.e., it is set to be a con-
stant when it is viewed at the small-scale time scale.
Thus the time derivative in Eq. (6) is assumed to be
with respect ¢* (with a little abuse of notation) and all
resolved quantities depend on spatial coordinates only.
Furthermore, to model the small-scale turbulent veloc-
ity field in a 3D domain 2, we consider a family of 1D
lines arranged as 3D lattice embedded in Q2. The fam-
ily consists of three types of lines {l1,l2, 3} orthogonal
each other and parallel to corresponding Cartesian co-
ordinates x;. The lines of each type intersects each
other at a center of a cell which is defined by the re-
solved grid in the domain 2. The line arrangement is
shown in Fig. 1.

We model the 3D small-scale velocity field as a fam-
ily of 1D small-scale velocity vector fields defined on
the underlying family of lines {l1, 12,13}

ui(Z,t758°) — ufy (1;,t°), €, ljeR
The small-scale velocity field uf, (I;,t";t%) can be
viewed as a snapshot of the small-scale 3D turbulent
field along the line {l;} somehow oriented in compu-
tational domain Q (in principle, the orientation of this
1D line can be arbitrary but in the present effort is
along the resolved grid lines).

The small-scale velocity fields evolve according to
simplified 1D governing equations that can be obtained
from the basic small-scale Eq. (6) by utilizing assump-
tions made in the definition of TLS model. Namely,
since the velocities are defined on 1D lines only, all
small-scale velocity and pressure derivatives with re-
spect to directions orthogonal to the line remain un-
known and have to be modelled. In the present effort
they assumed to be equal to corresponding derivatives
along the line. Though more sophisticated stochastic
models of the cross-line small-scale derivatives can be
introduced under this TLS approach. Thus, for exam-
ple:

i
oly = oly ~ Ols

This gives a following system of 1D equations for
small-scale velocities defined on the family of lines
{10152 155, k; = 1,...,Nj;5 = 1,2,3}, where Nj is
the number of lines of jth type,
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Here, the following notation is used: wuf;(l;,t") =
uf, (l;,t°) represents the i-th component of the small-
scale velocity belonging to j-th type of line, the up-
per index corresponding to the line number in l;-” is
also dropped for notation simplicity and interaction
terms are defined on the j-th line. The small and
resolved scales are coupled through a non-linear con-
vective term N L(uj;,uf;,1;) which subsumes all terms
of the small-scale equation except diffusion, pressure
gradient and non-stationary terms.

For example, the TLS small-scale equations along
l; lines (which are parallel to z-coordinate of the re-
solved grid) gives the following equations (denoting for
simplicity, uf; (I1,t) = (u®,v®,w®)) for u°- component:
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for v®-component:
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and for w*®-component:
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The resolved velocity is assumed to be known on
each line so the small-scale velocity field can be re-
constructed on lines by solving these equations. Note
that, on different line the system will generate different
small-scale fields since the resolved velocity is changing
from line to line.

Numerical Implementation
Numerical algorithm

We apply our TLS approach to simulate 3D tur-
bulent channel flow. The computational domain is
parallelepiped Q = 2w x 2 x 27 which discretized by
a very coarse resolved grid with a little stretching in

wall normal directions. The numerical algorithm is

e At time t = t", having known resolved velocity
ul (Z,t") on the coarse grid (obtained using a con-
ventional staggered grid finite-volume scheme!?),
interpolate it on each 1D line {I;}

ui (Z,8") — ui;(l)

e Solve the 1D small-scale system (8) on each line
with corresponding boundary condition to find

ufj(ljats)'

e Compute the small-scale velocity on the resolved
grid by averaging u;(l;,t°) over the three lines
intersecting at the resolved grid point

|ui (@, #7589 —ui(1;,8%)

e Advance the resolved velocity ul(Z,t") at time
t" 4+ At" by solving the resolved equations on the
resolved grid.

In the above algorithm, the time scale t" repre-
sents the time-scale on which all the resolved variables
evolves. The time step At" is therefore, the time step
for the resolved-scale evolution. The small-scale field
evolves on an faster time scale ¢* within every large-
scale time step. Thus, Ny = At"/At® is the total
number time steps the small-scale field evolves between
large-scale events.

For each type of line, the small-scale equation can
be written by equations in vector form:
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and, each vector-valued function F;(U?,U7),

DU, Ur) and R;(U!) depends on both the
small-scale and the resolved-scale velocities, and take
a particular form on each line [;. The second function
D; represents a product of the small-scale velocities
with corresponding derivatives of the resolved velocity
U! and R;, both depending only on the derivatives of
the resolved velocity.

The small-scale velocity field can have a very in-
termittent, high-gradient velocity profile especially in
flow regions with high turbulent intensity. Therefore,
it is important to use a numerical scheme which does
not introduce the spurious oscillations in the presence
high-gradients in the field. Also, for a given fixed
resolved velocity field one may expect that the so-
lution of the small-scale equation should take more
or less stationary form ensuring a uniqueness of the
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small-scale field for a given resolved field. Therefore,
a suitable numerical scheme should be able to recog-
nize stationary solutions. A two-step, component-wise
TVD scheme!? has been used to solve the small-scale
equations. This TVD scheme does not use the char-
acteristic decomposition used in usual TVD schemes
and this makes it particularly easy to implement. A
local Lax-Freidrichs flux splitting has been used for the
scheme upwinding procedure. The set of eigenvalues
of the Jacobian matrix of the flux function F;(U?,U;)
has been found independent on orientation of line [;.
The matrix is hyperbolic, and has three eigenvalues:
u+v+w, wt+v4+wand 2u+2v+ 2w. Here, the
largest one has been used for the flux splitting proce-
dure.

Small-scale pressure is handled as in a standard frac-
tional step method where it plays the role of enforcing
small-scale continuity. At the first step, the small-
scale equations are integrated without the pressure
gradient term, then the small-scale field is corrected in
such a way that the continuity is enforced. Under the
assumptions adopted in TLS small-scale model, the
pressure equation collapses into a second-order non-
homogeneous equation which can be easily integrated
analytically. As can be seen from the continuity equa-
tion on the line, such a role of pressure is equivalent
to having a following constraint on the small-scale ve-
locity field:

u® +v° +w’ =C(ly)

where C(l;) is a line-dependent constant which can be
found by using an appropriate boundary condition.

Note that, since the 1D lines extend through the en-
tire computational domain and terminate only at the
physical or computational boundaries, physically con-
sistent boundary conditions becomes particularly easy
to implement. For example, at the wall no-slip con-
dition can be enforced since the small-scale resolution
is considered sufficient to resolve the near-wall region
as in a DNS. Thus, the 3-component velocity solution
evolving on the matrix of 1D lines employ the same
forms of the governing equations but differ primarily
in the specification of the boundary conditions.

Coupling issues

Coupling between scales is achieved by averaging
the small-scale small-scale velocity field u;;°(I;) on the
three orthogonal lines at an intersection point, which
in the current case, is the cell center of the finite-
volume resolved-scale grid. This averaging can be both
in space within the large cell, as well as in time of evo-
lution (note, small-scale time At* < A¢". Such an
averaged value of the small-scale velocity is treated
as the resolved part of the small-scale velocity that
is evolving at the slow time ¢" on the large-scale grid.
Coupling is completed by modifying the resolved veloc-
ity field by this resolved part of the small-scale velocity
at each resolved cell in computational domain accord-

ing to the resolved Eq. (4)

Parallel performance and efficiency

A critical part of TLS calculation is reconstruction
of small-scale velocity field on lines. Thus, small-scale
equations of a type, Eq. (8) have to be solved on each
line. Master-slave algorithmic model provides a rel-
atively straightforward way to parallelize small-scale
velocity calculation. To compute small-scale velocity
field the master process sends all relevant “line” infor-
mation to each slave process which then performs the
numerical integration of Eq. (8). The master process
keeps sending new lines to slaves until no lines are left,
at the same time, the master receives the computed
small-scale line velocity profiles from slaves. Integra-
tion of the small-scale equations may take different
times since the 1D resolution in each direction can be
independently specified (as in the large-scale grid) and
therefore, the time step for integration can be differ-
ent. Time step can be restricted when there are large
and rapid variation in velocity field as well. For exam-
ple, due to high axial velocity fluctuations in the wall
normal directions, a finer grid and a small time-step
is necessary to resolve the flow features. Master-slave
model, due to its self-scheduling feature provides a nec-
essary load balancing for slave processes.

The parallel algorithm have been tested on sev-
eral high performance hardware platforms including
IBM SP3 "Habu” at NAVO MSRC. The IBM SP is
a massively parallel scalable machine which contains
334 SMP nodes with 4 CPUs and 4 GB of memory
per node. The parallel model demonstrated a good
scalability (80%) for up to 70-80 processors with a su-
perlinear speedup for a smaller number of processors.

Results and Discussion

3D TLS of high-Re channel flows have been con-
ducted using a staggered grid technique.!? A
third-order, low storage Runge-Kutta scheme is em-
ployed for temporal discretization. This scheme is
second-order accurate and the original solver employs
the standard Germano’s dynamics algebraic subgrid
model. For the new TLS application, the SGS model
is removed and replaced by the terms described in the
TLS formulation. The small-scale field is also simu-
lated using the TLS 1D model described earlier. No
special treatment of the near-wall cell is used in the
present effort since the primary goal of this study is to
evaluate the baseline TLS approach.

Simulations for a Re,=590 (based on wall units)
channel flow is performed in this initial effort since
DNS datal! is available for comparison. A resolution
of 32x32x32 is employed for the resolved field with no
stretching in the streamwise and spanwise direction
and only a nominal stretching in the wall normal di-
rection. This resolution is considered very coarse even
for a LES (the equivalent DNS resolution has been
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384 x 257 x 384), however, this grid is chosen in or-
der to challenge the ability of the TLS approach to
deal with high-Re flows using very coarse grid. With
this coarse grid, the minimum wall normal spacing is
AyT = 30 and therefore, the near-wall turbulent field
is not expected to be captured directly in the resolved
field. The burden for this resolution is on the small-
scale field.

The 1D lines, as noted above, can employ variable
grid in each co-ordinate direction. Here, we employ a
uniform grid of 8 1D cells per LES cell in all periodic
directions and a variable grid in the wall normal direc-
tion with a number of 1D cells varying from 12 near the
wall to 4 in the centerline region. The effect of vary-
ing the 1D grid resolution in each direction has not yet
been studied in detail but will be revisited in the near
future. For this resolution, a complete simulation of
the channel flow requires around 380 single-processor
hours on IBM SP3. We plan to continue to improve
the computational speed since many elements of the
current code can be improved upon.

Typical profiles of the streamwise small-scale and
resolved velocities for two different wall normal lines
are shown in Figs. 2 and 3. It can be seen that fluc-
tuations of the small-scale velocity is of high intensity
in the near wall region, as expected.

The mean profile of the streamwise velocity u”(yT)
along the wall-normal coordinate is shown in Fig. 4.
Note that, since the first resolved cell location is at
yt = 30, all data below this location is given entirely
by the “average” (over the small-scale time) solution
from the small-scale field. In general, the TLS profile
is very similar to the DNS results especially in the
near wall viscous sublayer region. However, away from
the wall, the TLS profile shows a little higher resolved
velocity magnitude. A possible reason for this can be
attributed to insufficient (i.e., coarse) resolution of the
resolved grid chosen for this test.

The rms velocity profiles are plotted in wall units
in Fig. 5. Streamwise velocity rms demonstrates the
correct location of its maximum although in the near-
wall region, it is a little overestimated. However, since
the peak occurs inside the small-scale field, the rea-
sonable accuracy in predicting the peak location and
its magnitude by this TLS approach suggests that this
approach has some physically consistent features.

Conclusions

A new TLS approach alternative to LES has been
developed based on the decomposition of velocity into
resolved and small-scale components. A coupled sys-
tem of the resolved and small-scale equation that is
not based on an eddy-viscosity type of assumption
has been derived and implemented to simulate very
high-Re wall-bounded turbulent flows as in a channel.
Results suggest that the baseline TLS model which re-
quires no adjustable parameters has the potential for

capturing turbulent flow behavior in high Re channel
flows using very coarse grids (e.g., the resolved grid
used for TLS is only 32x32x32 for a Re,=590 (whereas,
a 384x257x384 grid resolution is needed for an equiv-
alent DNS).

Further study is still needed to understand all the
nuances of the TLS approach. Issues related to op-
timal resolved grid resolution for a given Re needs
to be addressed in order to minimize the computa-
tional cost. Additional simulations of much higher Re
channel flows, high-Re flow past bumps, and high-Re
isotropic turbulence are currently being implemented.
Finally, the methodology is independent of the flow
speed and therefore, extension to compressible flow is
also being pursued.
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Fig. 2 The snapshot of the resolved streamwise
velocity on two different wall-normal lines.
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Fig. 3 The snapshot of the small-scale streamwise
velocity on two different wall-normal lines. Note
that one small-scale profile is shifted vertically from
zero line for visualization.
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Fig. 4 The mean total streamwise velocity profile
in wall units.
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Fig. 5 Rms velocity profiles in wall units.
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