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ABSTRACT 
A two-phase subgrid combustion model developed 

earlier has been evaluated for applicability in large- 
eddy simulations (LES). Direct Numerical Simulations 
(DNS) of two-phase isotropic turbulence in the 
presence of passive, momentum-coupled and 
vaporizing droplets has been extensively studied to 
form a base-line database. Current DNS results agree 
with earlier studies and show that the presence of 
droplets increase the kinetic energy and dissipation at 
the small scales. LES for these same cases were also 
carried out to investigate what modifications are needed 
to incorporate the small-scale turbulence modifications 
seen in DNS of two-phase flows. LES subgrid 
modeling for two-phase mixing within the context of 
the new subgrid combustion model is also addressed. 

INTRODUCTION 
Liquid fuel is used in many of the conventional 

engines (e.g., gas-turbine, internal combustion and 
diesel engines). Environmental concerns, government 
regulations and commercial viability makes it 
imperative to increase efficiency and reduce emissions. 
To achieve these desired features, there is a need to 
develop numerical methods which can accurately 
capture liquid fuel atomization process and fuel-air 
mixing downstream of the fuel injector. Steady-state 
methods are not suitable for studying highly unsteady 
fuel atomization and fuel-air mixing processes. On the 
other hand, although the unsteady mixing process can 
be studied quite accurately using direct numerical 
simulation (DNS) (e.g., Poinsot, 1996), the application 
of DNS is limited to low to moderate Reynolds 
numbers (Re) due to resolution requirements and 
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therefore, cannot be used for high Re flows of current 
interest. 

LES seems to be a viable approach to model 
combustion (Rim and Menon, 1999) and two-phase 
flows (Pannala and Menon, 1998; Menon et. al, 1999). 
In LES, the scales larger than the grid are computed 
using a time- and space-accurate scheme, while the 
unresolved smaller scales are modeled. Closure of 
momentum and energy transport equations can be 
achieved using a subgrid eddy viscosity model since the 
small scales primarily provide a dissipative mechanism 
for the energy transferred from the large scales. 
However, for combustion to occur, the species must 
first undergo mixing and come into molecular contact. 
These processes occur at the small scales which are not 
resolved in the conventional LES approach. As a result, 
conventional subgrid eddy diffusivity models cannot 
capture all these features. 

To address these issues a subgrid combustion 
model was developed and implemented within the LES 
formulation (Menon et al., 1993; Menon and Calhoon, 
1996; Calhoon and Menon, 1996, 1997). This model 
separately and simultaneously treats the physical 
processes of molecular diffusion and small scale 
turbulent convective stirring. This is in contrast to 
probability density function closure where molecular 
diffusion processes are to be’modeled, thereby making 
it difficult to address experimentally observed Schmidt 
number variations of the flow. 

The gas-phase methodology was recently extended 
to two-phase flows (Menon and Pannala, 1997 and 
Pannala and Menon, 1998) to accurately capture the 
process of phase change and turbulent mixing. In the 
present paper, this approach has been revisited using 
forced isotropic turbulence. 

Of particular interest for LES of two-phase flows is 
the proper characterization of the effects of turbulence 
on droplet properties as well as the reverse effect of 
droplet drag and vaporization on turbulence. The past 

1 



LES studies of Oefelein and Yang (1996) included the 
effect of turbulence on droplet characteristics but the 
modulation of the turbulence by the droplets was 
ignored. However, several studies (e.g. recent ones by 
Mashayek, 1998; Boivin et al., 1998) have shown that 
droplet drag and vaporization can have significant 
effect on turbulence. These studies as well as the earlier 
ones (Elgobashi and Truesdell, 1991, 1993 & 1994; 
Squires and Eaton, 1990 & 1991) demonstrated that 
depending upon the mass loading and droplet sizes, the 
droplets can change the energy transfer process leading 
to an increase in the turbulent kinetic energy at the 
small scales. Associated with this increase is an 
increase in the energy dissipation at the small scales. 
Since the small scales are not resolved in a LES it is of 
interest to determine what features of the small-scale 
effect caused by droplet-turbulence interactions need to 
be included in the subgrid model. 

In order to address this problem, several DNS of 
forced isotropic turbulence were carried out to 
characterize the effects of momentum-coupled and 
vaporizing sprays on gas-phase flows. The results were 
then analyzed using energy and dissipation spectra, 
Lagrangian correlations (both particle-particle and 
fluid-particle) and other statistical quantities. Finally, 
LES were conducted with and without the new subgrid 
mixing mode1 to evaluate its ability to deal with small- 
scale droplet-turbulence interactions. 

FORMULATION 
Both Eulerian and Lagrangian formulations have 

been used to simulate two-phase flows in the past (e.g., 
Mostafa and Mongia, 1983). However, most state-of- 
the-art codes employ the Lagrangian form to capture 
the droplet dynamics, while the gas phase is computed 
in the Eulerian form (e.g., Oefelein and Yang, 1996). In 
this formulation, the droplets are tracked explicitly 
using Lagrangian equations of motion, and heat and 
mass transfer are computed for each droplet. Due to 
resource constraints (computer time and memory), only 
a limited range of droplet sizes are computed. Droplets 
below an ad hoc cut-off size are assumed to vaporize 
instantaneously and to become fully mixed in the gas 
phase. This is a flawed assumption, since even in pure 
gas flows small-scale mixing process is very important 
for quantitative predictions (Menon and Calhoon, 
1996). Here, the gas-phase subgrid combustion 
methodology has been extended to allow proper 
simulation of the final stages of droplet evaporation and 
turbulent mixing. 

The two-phase subgrid process is implemented 
within the framework of the Eulerian-Lagrangian LES 
approach. Thus, droplets larger than the cut-off size are 

tracked as in the usual Lagrangian approach. However, 
once the droplets are smaller than the cut-off, a two- 
phase subgrid Eulerian model is employed to include 
the effects of the small droplets within the LES cells. 

Gas Phase LES Eauations 
The incompressible Navier Stokes equations in the 

zero Mach number limit are employed for the present 
study. Zero-Mach number approach involves using a 
series expansion in terms of Mach number to remove 
the acoustic component from the equations and is a well 
established method (McMurtry et al., 1989; 
Chakravarthy and Menon, 1997). 

The LES mass, momentum, energy and species 
equations in the zero-Mach number limit are: 

(1) 

apui+E,@ = *+p a2ui +aLj+Fs,i 
at J axj 

(2) 
axi ax,tixk axj 

s (3) 

- F, i + ps((iiilii)/2) 1 
apG .apGuj a2Y as . 
ar+axj= Oek+ axj 22 + i& + s,, c1 (4) 

The above system of equations is supplemented by 
the equation of state for the thermodynamic pressure 
j = pRT which can be used to obtain the temperature -- 
T. Here, p, ui, Y, and p are, respectively, the density, 
i-th velocity component, a-th species mass fraction 
and the kinematic pressure. Also, v, h, D and R are, 
respectively, the kinematic viscosity, the thermal 
conductivity, the mass diffusion (assumed constant and 
same for all species here, but can be generalized) and 
the gas constant. In Eq. (4), 0’; is the LES filtered 
species production/destruction term. Also, in the above 
equations, source terms p,, P,, &, and S, represent 
the volume-averaged rate of exchange of mass, 
momentum, energy and species between the gas-phase 
and the liquid phase. These terms are computed, as 
detailed elsewhere (Oefelein and Yang, 1996; Faeth, 
1983) and, therefore, omitted here for brevity. 
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. Furthermore, note that Eq. (3) is the equivalent energy 
equation in the zero-Mach number lim it. In the absence 
of heat release and no phase change, this equation and 
Eq. (1) will be identical. 

In the above equations, the subgrid stress tensor 
Zij = -(~j - iii~j) and the - -- species-velocity 
correlations Saj = -( Y,Uj-Y,Uj) require modeling. 
In the present LES approach, the stress term Zij is 
modeled as ‘tij = 2V,Sij Ghere v, is the eddy 
viscosity and S, is the resolved rate-of-strain tensor. 
The subgrid eddy viscosity is obtained in terms of the 
grid scale A and the subg * 
k sgs = (Gi- 6;) 

kinetic energy, 
as: v, = C, T- ksgsA , Here, ksgs is 

obtained by solving a transport equation and is 
described in next section. 

Liquid-Dhase LES eauations 
A Stochastic Separated Flow (SSF) formulation 

(Faeth, 1983; Oefelein and Yang, 1996) is used to track 
the droplets using Lagrangian equations of motion. The 
general equations of spherical droplets reduce to the 
following form (here, terms arising due to static 
pressure gradient, virtual-mass, Basset force and 
external body-forces are neglected for simplicity): 

dx~.i _ 
dt ‘i 

du 
x = iC,Re,+(~~-u,,~) 

dt (6) 
PPdP 

where the droplet properties are denoted by subscript p, 
d, is the droplet diameter and ui is the instantaneous 
gas phase velocities computed at the droplet location. 
This gas phase velocity field is obtained using both the 
filtered LES velocity field 4 and the subgrid kinetic 

energy ksgs (as in the eddy interaction model). The 
droplet Reynolds number is computed 

using: Re,=~I(ui-u,,i)(ui-U~,i)l”* and the 

drag coefficient is modeled by (Faeth, 1983): 

I 0.424 Re, > lo3 

The conservation of the mass of the droplets results 
is given by: drfz,/dt = -rit, where the mass transfer 

rate for a droplet in a convective flow field is given as: 
_ ,. 

mP  _---=I+ 
0.278Re,,“2Sc”3 

(8) 
mRe,=O [ 1 + 1.232/Re,Sc2’3] “* 

Here, SC is the Schmidt number and the subscript 

Rep = 0 indicates quiescent atmosphere when there is 
no velocity difference between the gas and the liquid 
phase. The mass transfer under this condition is given 
as ljtRezo= P 2np,D,,d,ln( 1 + B,,,,) . Here, ps and 

D,, are, respectively, the gas m ixture density and the 
m ixture diffusion coefficient at the droplet surface and 
B M  is the Spalding number which is given 
as B, ‘= (Y, F - Y,. F)/( 1 - Y,, F) . .Here, Y, F is the 
fuel mass fraction at the surface of the droplet and 
computed using’ the procedure described in Chen and 
Shuen (1993), while Y,, F  is the fuel mass fraction in 
the ambient gas. 

The heat transfer rate of the droplet (assuming 
uniform temperature in the droplet) is given by the 
following relation (Faeth, 1983): 

mC P drp = h,nd;(T - TP) - tipAh,, P.P dt (9) 

The heat transfer coefficient for a droplet in a 
convective flow field with mass transfer is modeled as 

h P=l+ 0.278Rep”2Pr”3 

hRe, = 0 [ 1 + 1.232/RepPr2’3]“2 
(10) 

Here, Pr is the gas phase Prandtl number and the 
heat transfer coefficient for quiescent medium is given 
as hRep = o = ~NuR~~=o id, where the Nusselt 

number is obtained from: 

NU+ 0 = 
21n( 1 + BM)Le-’ 

(1 + By)Le-’ - 1 
(11) 

NURe,= 0 approaches a value of 2 in the case of 

zero mass transfer and Le is the Lewis number. Only- 
droplets above a cut-off diameter are solved using the 
above equations, while the droplets below the cut-off 
diameter are modeled using Eulerian formulation 
within the subgrid. 
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In summary, the present LES approach solves only 
the momentum equations on the LES grid. Closure for 
the subgrid stresses is achieved by using a localized 
dynamic model for the subgrid kinetic energy. 
Concurrently, the liquid phase equations are solved 
using the Lagrangian technique. The range of droplet 
sizes tracked depends on the computational constraints. 
The gas phase LES velocity field and the subgrid 
kinetic energy are used to estimate the instantaneous 
gas velocity at the droplet location. This essentially 
provides a coupling between the gas and liquid phase 
momentum transport. The mass conservation and the 
gas phase scalar field equations are simulated in the 
subgrid domain as discussed in the next section. 

SUBGRID MODELS 
Closure of the above LES equations (both gas and 

liquid phases) require models for the unresolved terms. 
Two types of closure are needed: a closure for 
momentum transport and a closure for the scalar 
transport (both gas and liquid phases). The closure for 
the momentum transport is achieved by using an eddy 
viscosity model which is considered reasonable since 
the small scales are assumed to primarily provide 
dissipation for the energy transferred from the large 
scales. The specification of the eddy viscosity requires 
a length and a velocity (or a time) scale. Many past 
LES studies have employed an algebraic eddy viscosity 
model which uses the grid size as the length scale and 
the resolved rate-of-strain tensor as the time scale. 
However, this model has some serious limitations. For 
example, this approach requires equilibrium between 
turbulent kinetic energy production and dissipation in 
the small scales which is possible only if a very high 
resolution LES grid is employed such that only the 
dissipation scales are unresolved. Such high resolution 
simulations are not feasible in practice due to resource 
constraints. 

In the present study (as well as the earlier effort, 
Menon and Pannala, 1997), a subgrid model based on 
the subgrid kinetic energy is employed to obtain the 
characteristic velocity scale. With this approach, the 
equilibrium requirement can be relaxed and coarser grid 
LES is possible as demonstrated earlier (Rim and 
Menon, 1998). Furthermore, to model turbulent 
dispersion of particles the subgrid kinetic energy 
provides the required information which is absent in the 
algebraic model closure. In earlier LES studies by 
Wang and Squires (1996), subgrid kinetic energy 
equation was explicitly carried to provide additional 
information to supply velocity variations for the 
Lagrangian tracking scheme of the particles. 

3.1 The Subgrid Momentum Closure 
The subgrid closure of the unresolved stresses and 

energy flux is achieved in the present approach by 
solving a transport model for the subgrid kinetic 
energy, ksgs . Details have been reported elsewhere. 
Here, the extension of the earlier model for gas phase to 
two-phase flows has been carried out. The final form is: 

apkSgS a _ sgs 
at +z,(Puik > = T,+P,-D,+F, (12) 

is the transport term 

and ok = 1. is a constant. The other terms, Pk and D, 

are respectively, production and dissipation of ksgs. 
The last term F, is unique to two-phase flows and 
represents the work done due to the two-phase coupling 
force term P, i . This term (similar to terms in the LES 
equations, Eq. 2) provides the coupling between the 
turbulent motion of the droplets and the evolution of the 
subgrid kinetic energy. The closure of Eq. (12) is 

sgs3/2 

obtained using P, = -zijsgsSij, D, = C,pkT and 

Fk = F’s;, iUi - FTiiii (13) 

Here, C, is another coefficient that must be 
obtained (along with C, ) using the dynamic procedure. 

The expression in Eq. (13) represents the direct 
effect of two-phase coupling on ksgs and requires 

modeling. Note that, ksgs is indirectly modified due to 
particle motion and vaporization since the force term 
P, i will change the resolved velocity field (via Eq. 2) 
which in turn will change the resolved subgrid kinetic 
energy. Inclusion of the term F, allows for an 
additional (direct) modification of the subgrid kinetic 
energy due to interaction between the particles and the 
unresolved small scale motion. Here the term in Eq. 
(13) is modeled as follows: 

F = (UiF~,i)-Ei(P~,i) 

Here, ( ) represents an average over all the 
droplet trajectories crossing the cell. This closure is 
very similar to that of Chen and Pereira (1998), where it 
has been applied in a k-E Reynolds-averaged 
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formulation. Since all the necessary information for 
closure is available, this is complete representation and 
no tunable constants are required. 

Thus, the presence of the droplets can have a two- 
fold effect. The first effect is directly on the LES 
resolved momentum transport due to the coupling force 
term, P, i . The second effect is the modification to the 
subgrid kinetic energy due to the force term Eq. (14) 
which accounts for the interaction between the particles 
and the small-scale unresolved turbulent field. 

3.2 The Subgrid Species Closure 
The principle difficulty in reacting LES 

simulations is the proper modeling of the combustion 
related terms involving temperature and species, for 
example, the subgrid species fluxes and the filtered 
species mass production rate W’L . Probability density 
function methods when applied within LES either using 
an assumed shape 
to close Za 

or an evolution equation may be used 
and, in principle, any scalar correlations. 

However, the treatment of molecular mixing and small 
scale stirring using phenomenological models as in pdf 
methods, have not been very successful in predicting 
the mixing effects. Problems have also been noted 
when the gradient diffusion model is used to 
approximate the species transport terms. 

The linear eddy mixing (LEM) model (Kerstein, 
1989) treats separately molecular diffusion and 
turbulent mixing processes at all relevant length scales 
of the flow. The scalar fields are simulated within a ID 
domain which, in the context of LES, represents a 1D 
slice of the subgrid flame brush. The subgrid model 
simulates only the effect of the small unresolved scales 
on the scalar fields while the larger resolved turbulent 
scales of the flow are simulated by the LES equations. 
The subgrid LEM has several advantages over 
conventional LES of reacting flows. In addition to 
providing an accurate treatment of the small-scale 
turbulent mixing and molecular diffusion processes, 
this method avoids gradient diffusion modeling of 
scalar transport. Thus, both co- and counter-gradient 
diffusion can be simulated. More details of this 
approach (which is identical to the method used for gas 
phase LES) are given elsewhere (Menon and Calhoon, 
1996; Calhoon and Menon, 1996, 1997) and therefore, 
avoided here. 

3.2.1 The Single Phase Model 
In the baseline model the exact reaction-diffusion 

equations are numerically solved using a finite- 
difference scheme in the local subgrid 1D domain using 

a grid fine enough to resolve the Kolmogorov 
microscales. Consequently, the production rate ti, can 
be specified in the subgrid without any modeling. 
Simultaneous to the deterministic evolution of the 
reaction-diffusion processes, turbulent convective 
stirring within the 1D domain is modeled by a 
stochastic mapping process (Kerstein, 1992). This 
procedure models the effect of turbulent eddies on the 
scalar fields and is implemented as an instantaneous 
rearrangement of the scalar fields without changing the 
magnitudes of the individual fluid elements, consistent 
with the concept of turbulent stirring. 

The implementation of the stirring process requires 
(randomly) determining the eddy size 1 from a length 
scale pdf f(r) in the range rl I 1 I I,,&, where 11 is 

the Kolmogorov scale and I,,,,,, is the characteristic 
subgrid length scale which is currently assumed to be 
the local grid resolution A. A key feature of this 
approach is that this range of scales is determined from 
inertial range scaling as in 3D turbulence for a given 
subgrid Reynolds number: Re,,, = u’l,.&,/v 

where, u’ is obtained from ksgs. Thus, the range of 
eddy sizes and the stirring frequency incorporates the 
fact that the small scales are 3D. This feature is one of 
the major reasons for the past successes of LEM in gas 
phase diffusion flame studies (Menon and Calhoon, 
1996; Calhoon and Menon, 1996, 1997). 

Modifications for two-phase flows need to be 
considered in this formulation. The stirring process uses 
inertial range scaling laws which do not account for the 
presence of droplets. Since droplet motion and 
vaporization can change the turbulent spectra in the 
inertial range then this information needs to be 
incorporated. The following modifications to f(I) and 
the event frequency have been made to account for the 
effect of droplets on the turbulent field. If the inertial 
scaling law is p-3 (for the Kolmogorov spectra p would 
be 4/3), then the distribution f( 1) and event frequency 
parameter (h) are given as (Kerstein, 1991): 

f(l) = 3-P 

ilem[(llem/rl)3-P- ll 
u,e,/q)p-4 (15) 

h= 21 -- p 4 U,,,,&I)~-~-~ 
2 3 - P13rpm 1 - o14,,)p 

(16) 

The value of the exponent p needs to be determined 
for the case with droplets. 
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3.2.2 The Two-Phase Model 
For two-phase flows, the LEM reaction-diffusion 

equations have been modified to include two new 
features: (a) the vaporization of the droplets tracked by 
the Lagrangian method, and (b) the vaporization of 
droplets below the cut-off so that the final stages of 
droplet vaporization and mixing are included. However, 
some changes are required since droplet vaporization 
will change the subgrid mass of the gas (primarily the 
fuel). Thus, in addition to the scalar reaction-diffusion 
equations, the two-phase mass conservation equations 
must be solved in the subgrid. 

The droplets below the cutoff have been included 
by assuming that the droplets act as a psuedo-fluid and 
therefore, the overall effect of the droplets within each 
LES cell can be modeled as a void fraction. This 
approach is valid only when the droplets form only a 
small fraction of the total volume and are small. 
However, this is an acceptable assumption here since 
all droplets larger than the cut-off are still tracked using 
the Lagrangian approach. The present Eulerian two- 
phase approach is also preferred (in terms of accuracy) 
when compared to the Lagrangian approach when the 
droplets are very small and begin to behave more like a 
continuum fluid. 

Mass conservation in both the phases in the LEM 
is given by: ps(p + p,( 1 - cp) = pavg , where subscript g 

represents gas phase, 1 the liquid phase and cp is the 
volume fraction of the gas phase (1 - void fraction of 
the liquid (h)). The void fraction h or cp evolve during 
the subgrid evolution. Although, the liquid density is a 
constant, the gas density ps changes and needs to be 
determined. The mass conservation of each phase is 
imposed in the subgrid scales and are obtained from the 
following equations: 

(17) 

w-cp)~, = s 
at 

-s 1 2 

Here, the source term S, is the contribution of the 
supergrid droplets (i.e., the LES-resolved Lagrangian 
droplets) to the subgrid liquid phase when the droplet 
size falls below the cutoff. S, is due to vaporization of 
the droplets tracked in the supergrid and S, represents 
vaporization of liquid in the subgrid. 

The gas phase species equation for any scalar mass 

fraction (Y) in the subgrid can be written as 

apgqw 
at 

= Da2(pg’pw) +ci, 
as2 

+s +s w w L (1% 

Here, “s” indicates the 1D domain of LEM. Also, 
S, is the source term (only in the fuel species 
equation) for production due to vaporization of the 
liquid phase. An equation for temperature must also be 
solved with the above equations since vaporization 
requires heat absorption and is followed by a drop in 
temperature. This is quite similar to the method used in 
the earlier gas phase studies of heat release effect 
(Calhoon and Menon, 1997). 

Note that, in Eqs. (17-19) the convective terms are 
missing. This is consistent with the LEM approach, 
whereby, the convection of the scalar fields is modeled 
using two distinct and concurrent processes: the small- 
scale turbulent stirring which accounts for convection 
in the small scales and the splicing process which 
accounts for convection of scalars at the LES resolved 
scales. Some comments regarding the large-scale 
convection process is given in the next section. 

3.3 Subgrid implementation 

Since the filtered species y, and the mixture 
density p are calculated directly by filtering the 
subgrid Y, and pavg fields, there is no need to solve 
the equivalent LES filtered mixture mass and species 
conservation equations (i.e., Eqs. 1 and 4). 
Consequently, use of conventional (gradient diffusion) 
models is avoided. However, since both Y, and povg 
subgrid fields are also influenced by large scale 
convection (due to the velocity field iii and the subgrid 

turbulent fluctuation estimated from ksgs ), additional 
coupling processes are required. 

The convection of the scalar fields by the LES field 
across LES cell faces is modeled by a “splicing” 
algorithm (Menon et al., 1993; Menon and Calhoon, 
1996; Calhoon and Menon, 1996). Details of this 
process are given in the cited references. Given the 
initial subgrid scalar fields and void fraction, droplet 
vaporization, reaction-diffusion, turbulent stirring, and 
large scale convection processes are implemented as 
discrete events within each LES cell. The epochs of 
these processes are determined by their respective time 
scales. 

The splicing algorithm transports subgrid fluid 
elements from one LES cell to another based on the 
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local velocity field. The local velocity consists of the 
resolved velocity fij plus a fluctuating component 
(estimated from the subgrid kinetic energy). The 
splicing events are implemented discretely on the 
convective time scale. Each splicing event involves (1) 
the determination of volume transfer between adjacent 
LES grid cells, (2) the identification of the subgrid 
elements to be transferred, and (3) the actual transport 
of the identified fluid elements. The underlying 
rationale for this procedure has been discussed 
elsewhere (Menon et al., 1993; Calhoon and Menon, 
1996). The same algorithm is used here. 

An important property of the splicing algorithm is 
that the species convection is treated as in Lagrangian 
schemes. Thus, convection is independent of the 
magnitude or gradient of the species which are 
transported and depends only on the velocity field. This 
property allows this algorithm to avoid false diffusion 
associated with numerical approximation of convective 
terms in differential equations. By avoiding both 
numerical and gradient diffusion, the splicing algorithm 
allows an accurate picture of the small scale effects of 
molecular diffusion to be captured, including counter- 
gradient and differential diffusion effects. 

RESULTS AND DISCUSSION 
The two-phase subgrid model has been 

implemented into a zero-Mach number code. The code 
is a finite difference semi-implicit solver that is second- 
order accurate in time, and uses a fifth-order upwind 
biased stencil for the convective terms, a fourth-order 
central scheme for the viscous terms and a second-order 
scheme for the solution of the Poisson equation for 
pressure. 

The Lagrangian tracking of the droplets is carried 
out using a fourth-order Runge-Kutta scheme and the 
gas phase properties at the droplet location are obtained 
using a fourth order Lagrangian interpolation scheme. 
The droplet source terms are projected onto the 
surrounding gas-phase nodes. Two methods were 
investigated for this interpolation. In first case, all the 
weights were assumed to be the same and in the second 
case, they were calculate based on the droplet distance 
to the nodes. Both cases gave statistically similar results 
and thus, the equal-weights method was used in these 
simulations. 

The simulations were started from a stationary state 
of 643 pseudo-spectral simulation of isotropic 
turbulence (Yeung and Pope, 1989). The simulations 
were forced using an integrated stochastic forcing 
scheme with the same parameters as those used by 
Yeung and Pope (1989). The forcing accelerations are 

calculated in the spectral space as in the pseudo- 
spectral codes, transformed to the physical space and 
then:added to the velocities. The forcing for the LES 
cases is also carried out at the 1283 resolution and 
filtered down to 643 to preserve similarity and to 
remove uncertainty. The simulations were time 
advanced for several flow-through times till a 
statistically stationary state evolved. Statistics were 
collected over 15 eddy-turn over times for validation. 

For the two-phase DNS, droplets were added to 
this field so that the initial flow field is statistically 
homogeneous. The two-phase DNS evolved in time for 
3-4 eddy-turn over times before statistics were collected 
for another 3-4 eddy-turn over times. 

DNS of sinale-Dhase forced isotropic turbulence 
Validation of the baseline code was carried out by 

carrying out DNS of forced isotropic turbulence using 
the method noted above. Stochastically forced 
turbulence at a Rek - 62 was simulated using a 1283 
grid. Normalized energy spectra and dissipation spectra 
are compared to the experiments (Reh=65) of Comte- 
Bellot & Corrsin (1971) and the DNS (Reh=63) of 
Yeung and Pope (1989). Good agreement with 
experiments and earlier simulations at high 
wavenumbers is evident from Figure la for both the 
energy and dissipation spectra. 

Figure lb shows the Kolmogorov scaled kinetic 
energy spectra. Also shown are lines corresponding to 
values of 1.5 and 2.5 on y-axis. At the Reynolds- 
number simulated one expects a small inertial region 
and the plateau gives the value of the Kolmogorov 
constant close to 2. This is close to the value computed 
in earlier DNS (Yeung, 1996) and near the’ 
experimentally observed value of 1.5. 

Yeung and Pope (1989) use k,,,rl to characterize 
the resolution of the simulations (k,, is the maximum 
wavenumber). In pseudo-spectral codes this has to be > 
1.5 for adequate resolution. The resolution for the 
current DNS is also adequate with k,,q - 2.3. To 
further verify this, the dissipation skewness (Se) defined 
as (Kerr, 1985): 

s, = cw 

was computed. Here, E(k) is the energy spectrum 

function at the scalar wavenumber k = (k. &)I’*, v is 
the kinematic viscosity and <E> is the volume-averaged 
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dissipation obtained by integrating the dissipation 
spectrum D(k), defined by 2vk*E(k). We obtained a 
value of 0.53 which is very close to the asymptotic 
value of 0.5 for high-Re. This also compares very well 
to the values reported by Eswaran and Pope (1988) and 
Yeung and Pope ( 1989). 

Analysis of other statistical parameters confirmed 
that the present physical space code is capable of 
accurately simulating this flow field. Therefore, we can 
now use this code to study other relevant issues. 

Momentum-couDk?d two-Dhase IsotroDic turbulence 
To study two-way coupling (due to the source term 

in the momentum equation 2) between the gas-phase 
and the liquid-phase simulations were carried out with 
323 stochastic droplets. The actual number of particles 
is dictated by the mass-loading ($), density of the 
particle (p,) and droplet diameter (d$. The statistical 

error (which varies as I/( fi) ) is less than 1% for the 
current number of droplets. 

Figure 2a shows the effect of droplets on 
normalized energy spectrum. As observed in earlier 
studies (e.g. Squires and Eaton, 1990) there has been an 
increase in energy at the high wavenumbers (small 
scales). However, this increase depends upon the mass 
loading and the present result agrees very well with past 
observations that energy increase at the small scales 
occurs more with higher mass loading. Figure 2b shows 
the corresponding dissipation spectrum. Since there is 
more energy at the small scales, there is also more 
dissipation (note D(k) = 2vk*E(k)). 

The primary effects of the droplets are (i) to 
rearrange the energy in the wavenumber space and (ii) 
to dissipate energy. This is evident in Figure 3a, where 
the equilibrium values of the kinetic energy (1/2q*) and 
mean dissipation (CC-) are plotted for various mass 
loadings. The values are normalized by the respective 
quantities for the no-coupling case. It is very evident 
that kinetic energy of the system decreases because of 
the dissipation by the droplets. The equilibrium values 
are thus lower than the corresponding non-coupled case 
and decrease with increased mass loading. These results 
are in good agreement with those of Boivin et al. (1998) 
and Squires and Eaton (1990). 

The dissipation skewness, described earlier is 
plotted for various mass loadings in fig. 3b. This 
higher-order, small-scale parameter increases with 
increase in mass-loading. This reflects the increase in 
dissipation at the high wavenumbers and the increased 
activity at the small-scales. Analysis of transfer spectra 
(e.g. Boivin et. al., 1998) can be used to determine the 

energy transfer across the wavenumbers and subsequent 
dissipation mechanism. This study is underway. 

One of the parameters which characterizes the 
particle response is the particle Stokes Number (St) 
defined as St = ‘$,/Q. Here, zp is the particle response 

time given by p,d,,*/l8p and ze is the eddy turn over 
time calculated using integral length scale and u’. For 
low mass loading case (Q=O.l) and for small particles 
(St c 0.4) figs. 4a and 4b shows that there is negligible 
effect on the energy and dissipation spectra. 

Droplets with St - 1 under the experience of 
centrifugal forces accumulate in the regions of low 
vorticity. This feature has been observed in isotropic 
turbulence (e.g. Squires and Eaton, 1990) and in forced 
shear layers (e.g. Lazaro and Lasheras, 1992; Martin 
and Meiburg, 1994; Pannala and Menon, 1998; Menon 
and Pannala, 1998). The same phenomena can be 
observed here by comparing figs. 5a and 5b. 

These results suggest that the present DNS study 
has been able to capture all the essential features of 
two-way momentum coupling observed in past. This 
forms the basis for studying the effect of vaporizing 
droplets and is covered in the next sub-section. 

VaDorizina droplets in isotropic turbulence 
Vaporization is turned on from an initial 

equilibrium solution of forced isotropic turbulence with 
suspended particles. Since this is a time evolving 
process and there is continual addition of mass, and 
exchange of momentum and energy (kinetic and 
thermal), even with forcing no stationary state can be 
reached. Furthermore, in a periodic domain high rates 
of mass addition and heat transfer also cause numerical 
instability and cannot be simulated. For the current 
study, the vaporization rate was chosen such that the 
numerical scheme is stable. As a result, only low 
vaporization rates could be simulated. This is an issue 
that needs to be addressed in the future using a spatially 
evolving flow since high vaporization rates can cause 
marked changes that may not be observed in the present 
study. 

Figure 6a shows the evolution of the kinetic energy 
spectrum with time after droplet vaporization is turned 
on. Initially, there is a rapid concentration of energy in 
the small scales and the corresponding increase in 
dissipation can also be seen in the dissipation spectrum 
shown in Figure 6b. However, as vaporization 
continues both the energy and dissipation spectra 
relaxes towards the spectra without any droplets. This 
suggests that an equilibrium state can be reached if 
mass addition and heat transfer rates are very low as is 
the present case. 
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C Figure 7 shows the vorticity contours and product 
mass-fraction contours at two different time instants. 
Here, the droplets vaporize and in gaseous phase react 
with the surrounding oxidizer at infinite rate to form  the 
product. The product mass fraction distribution is an 
outcome of complex droplet-fluid, scalar-velocity and 
droplet-scalar interactions. The product mass fraction 
reflects the preferential concentration of the droplets (as 
discussed in the earlier section) and the processes 
associated with transport of scalars. 

LES of two-Dhase isotroeic turbulence 
LES of isotropic turbulence simulated using DNS 

has been carried out using a dynamic subgrid kinetic 
energy equation for momentum closures. 

Figure 8a compares the kinetic energy spectra 
obtained for both coupled and un-coupled (un-filtered) 
DNS and LES. For uncoupled case (@=O) LES captures 
the DNS spectra over all the resolved wavenumbers. At 
high wavenumbers there is sharp drop off in the LES 
spectra. However, some of the unresolved energy 
appears as ksgs as shown in Figure 8b. 

The exact interpretation of the energy resolved by 
the LES and modeled by the subgrid kinetic energy is 
difficult in spectral space since the present physical 
space LES uses a box filter and LES cut-off 
wavenumber does not exactly match the spectral cut- 
off. Hence, ksgs also contains some of the resolved scale 
energy and therefore, it is difficult to differentiate 
between the unresolved and resolved scale contribution 
to ksgs 

For the momentum-coupled case, DNS shows an 
increase in kinetic energy at the high wavenumbers. 
Although this trend is captured by the LES there is 
some discrepancy in the magnitude. In light of the 
above differences between the spectral and LES cut- 
offs, increased values of ksgs (Figure 8b) at the high 
wavenumber would suggest that this feature is captured 
in LES through the subgrid model. Note that for direct 
comparison, both E(k) and qgs are scaled by the 
average kinetic energy ( l/2q2). 

Figure 9a shows the LES result and by comparing 
it to Figure 3a, one can see that the dissipation of 
energy with increasing mass loading is accurately 
captured. However, the magnitudes are not in very 
good agreement and is attributed to the fact that the 
unresolved energy (k,& is not included in the 
calculations. Similar to Fig. 3b, Fig. 9a illustrates the 
variation of dissipation skewness with mass loading. 
Since, dissipation skewness is primarily a small-scale 
feature, it does no surprise that the magnitude is 
underpredicted in the absence of small-scale energy. 

The vaporization cases have also been studied with 
and without the subgrid model (LEM) for the species 
closure; Since the. vaporization is very low, droplets 
size does not vary much and do not fall below the cut- 
off diameter. Thus, all the droplets are tracked using the 
Lagrangian tracking scheme and the terms Sl and S2 in 
Eq. (18) are zero. As a consequence, the void fraction 
in the subgrid implementation is zero. However, the 
key difference between the classical LES and the new 
subgrid based LES is that all the scalar information is 
carried in the subgrid and scalar transport across LES 
cell faces is by the splicing method (described earlier). 
In the current simulations since the subgrid turbulence 
is low, one does not expect to see drastic differences 
between the two approaches. Figure 10 reflects this fact 
and shows no observable differences between the two 
LES approaches. As in the momentum-coupled case 
there is an increase in the ksgs to account for the 
reduced resolved kinetic energy in the LES. 

To determ ine the impact of varying the exponent p 
in Eq. 15, LES with p = 4/3 (corresponding to -5/3 
inertial scaling law) and p = 1 (corresponding to -2 
inertial scaling law) were compared. No observable 
differences were seen. However, this may be an artifact 
of the present low vaporization case and needs to be 
addressed in more details using spatially evolving shear 
layers with realistic vaporization. 

Finally, to characterize the particle energy in both 
DNS and LES, Lagrangian autocorrelation coefficient 
of the particle velocities are calculated. The 
autocorrelation coefficient is computed using the 
following relation: 

RLp,i =  
(Vi(ro)vi(ro +  z>) 

[(v:o,Nl”*r <v;<t, + d’* 

In the momentum-coupled case since the flow is 
stationary, to can be arbitrarily chosen. For the 
vaporization case it is chosen as the time when 
evaporation is turned on. Figure 1 la shows the 
autocorrelation coefficient for LES and DNS for the 
momentum-coupled case where as for the vaporization 
case (Figure 1 lb) a much .better agreement is observed. 
This observation needs to be investigated further. 

CONCLUSIONS 
DNS using the current finite-difference code was 

able to capture most of the features observed in 
experiments and past calculations using psuedo-spectral 
codes. LES in the current implementation was also able 
to capture most of the physics (especially at the low 
wavenumbers) as predicted by DNS. The current LES 
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were restricted to low vaporization rates and to 
relatively low Re. However, within this limitation, 
results show that the present LES can deal with the 
changes in turbulence at the small scales. In particular, 
the subgrid kinetic energy model shows an ability to 
account for the increase in the unresolved energy. For 
further evaluation of the coupling between droplet 
motion and turbulence, spatially evolving shear layers 
are being simulated. Realistic vaporization rates and 
chemical kinetics will be simulated in these flows. 
Results of these studies will be reported in the future. 
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Figure 1. DNS validation. (a) Normalized kinetic energy and dissipation spectra and (b) Prediction of Kolmogorov con- 
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Figure 2. Effect of two-way momentum coupling with mass-loading of the droplets (a) Kinetic energy spectrum and (b) 
Dissipation spectrum. 

Figure 3. Variation of gas-phase properties with mass loading. a) Total kinetic energy and dissipation rate and b) Dissi- 
pation skewness. 
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Figure 4. Effect of two-way momentum coupling with Stokes number of the droplets (a) Kinetic energy spectrum and (b) 
Dissipation spectrum. 

Figure 5. Preferential concentration of droplets 
tribution of droplets in the spanwise direction. 
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Figure 6. Time variation of effect of two-way coupling with vaporizing droplets (a) Kinetic energy spectrum and (b) Dis- 
sipation spectrum. 
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Figure 7. Snapshots of span-wise vorticity (left) and product-mass fraction distribution (right) at two different time 
instants for St&.4 and @OS. 

krl 

I 
10-l IO0 

km 

Figure 8. Comparison of LES with DNS for two-way momentum coupling for St=O.4 (a) Kinetic energy spectrum and (b) 
Subgrid kinetic energy spectrum. 
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Figure 9. Variation of gas-phase properties with mass loading as predicted by LES. a) Resolved total kinetic energy and 
dissipation rate and b) Dissipation skewness computed using resolved scale field. 
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Figure 10. Comparison of LES with DNS for two-way coupling for vaporizing droplets of St=O.4 (a) Kinetic energy spec- 
trum and (b) Subgrid kinetic energy spectrum. 
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Figure 11. Time evolution of fluid-particle correlations for St=0.4 and @OS. (a) Momentum coupling and (b) Two-way 
coupling with vaporizing droplets. 
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