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ABSTRACT
The localized dynamic subgrid-scale model intro-
duced by Kirn & Menon (1995), has been used
hi large-eddy simulations of decaying and forced
isotropic turbulence, and temporally evolving turbu-
lent mixing layer for high Reynolds numbers. In the
simulations of isotropic turbulence, it is demonstrated
that the low-resolution large-eddy simulation results
accurately reproduce the characteristics of a realistic,
high-Reynolds number turbulence such as the power-
law decay (decaying case), and the velocity statis-
tics and the development of the non-Gaussian statis-
tics (forced case). From the large-eddy simulations of
temporally evolving turbulent mixing layer, the tune-
accurate results, which agree very well with the ex-
isting high-resolution direct numerical simulation and
experimental data, are obtained using a new scaling
which is capable of separating the distinct effects of
initial development on the self-similar stage of the
mixing layer evolution.

1 INTRODUCTION
The dynamic subgrid-scale (SGS) model, introduced
by Germano et al (1991), has been successfully ap-
plied to various types of flow fields (Moin et al., 1991;
Piomelli, 1993; Squires & Piomelli, 1994; Ghosal et
al., 1995). Two desirable features make this model es-
pecially attractive. First, the model coefficient is de-
termined as a part of the solution, thus, removing the
major limitation of the conventional eddy-viscosity
type SGS models which was the inability to parame-
terize accurately the unresolved SGS stresses in differ-
ent turbulent flows with a single universal constant.
Second, as a result of the dynamic determination, the
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model coefficient can become negative in certain re-
gions of the flow field and, thus, appears to have the
capability to mimic backscatter of energy from the
subgrid-scales to the resolved scales. Although it has
been shown that Germano et aL's dynamic model is
superior to the conventional fixed-coefficient model,
the dynamic procedure, as developed earlier, still has
some deficiencies. These deficiencies originate from
a weakness of the Smagorinsky model used in Ger-
mano et aL's dynamic model, as well as, from the
mathematically inconsistent derivation and the ill-
conditioning of the dynamic formulation itself.

Recently, Kim and Menon (1995a,b) developed
a new localized dynamic subgrid-scale (LDKSGS)
model associated with the SGS kinetic energy equa-
tion model. In this model, all deficiencies of Germano
et aL's dynamic subgrid-scale model were overcome.
This model also provides a straightforward localized
evaluation of the model coefficients which do not
cause any numerical instability. Moreover, the local-
ized model coefficients obtained from this model are
proved to be Galilean-invariant and very realizable.
The localized dynamic model was applied to Taylor-
Green vortex flows and, it was shown that this model
predicts the turbulent flow field more accurately than
the previously developed dynamic models. In this pa-
per, the application of this model to high Reynolds
number decaying and forced isotropic turbulence, and
turbulent mixing layers is discussed. The results are
compared with predictions using experiments, direct
numerical simulation (DNS) and large-eddy simula-
tions (LES) using Germano et aL's dynamic model.

The numerical simulations were carried out using
a finite-difference code that is second-order accurate
hi tune and fifth-order (the convective terms) and
sixth-order (the viscous terms) accurate in space us-
ing upwind-biased differences. Time-accurate solu-
tions of the incompressible Navier-Stokes equations
are obtained by the artificial compressibility approach
which requires subiteration hi pseudotime to get the



divergence-free flow field. A significant acceleration of
the convergence to a steady-state divergence-free so-
lution in pseudotime is achieved by incorporating the
full approximation scheme (FAS) multigrid method.
Earlier (Menon and Yeung, 1994), this code was vali-
dated by carrying out DNS of decaying isotropic tur-
bulence and comparing the resulting statistics with
the predictions of a well known psuedo spectral code.
Further validation of this code is demonstrated in this
study by comparison with experiments.

In section 2, the LDKSGS model is described with
the basic equations indicating its advantages. In sec-
tion 3, the LDKSGS model is applied to decaying
and force isotropic turbulence, and temporally evolv-
ing turbulent mixing layer. Conclusions are presented
in section 4.

2 LOCALIZED DYNAMIC AJ-EQUATI-
ON SGS (LDKSGS) MODEL

In physical space, the incompressible Navier-Stokes
equations for LES are obtained by filtering them us-
ing low-pass filter of a computational mesh (hence,
the characteristic length of this filter is the grid width
A) as follows,

= 0 (i)

where Ui(xi,t) is the resolved velocity field. The
application of the grid filter results in the follow-
ing unknown SGS stress tensor, ry = TZiSJ — uftj,
which needs to be modeled in terms of the resolved
velocity field u. Eddy viscosity assumption implies
Tij — —2i/r^ij + s&jTjub where VT is the eddy vis-
cosity and Sij — \ (dui/dxj + cSZj/Szi). Simple di-
mensional arguments suggest that the eddy viscos-
ity VT should be given by the product of a velocity
scale and a length scale. In LES, the length scale is
usually related to the filter size (A), however, mod-
els differ in their prescription for the velocity scale
which can be estimated from the smallest resolved
scales. In the Smagorinsky model, an algebraically
described velocity scale is obtained by assuming that
an equilibrium exists between energy production and
dissipation in the small scales. One-equation SGS
model solves the following transport equation (e.g.
Menon et a/., 1995) for the subgrid-scale kinetic en-
ergy) *»ff* = 2 (S5«i— «»«»), to provide the velocity
scale:

- dk,g

Here, the three terms on the right-hand-side of (3)
represent, respectively, the production, dissipation
and diffusion of kig,. In the model of the diffusion
term, the direct effect of v has been dropped. In the
original model of this term, &*r/o*. is used in place
of VT. However, since a* = 1 is usually adopted
(Yoshizawa, 1993), a* has been dropped from (3).
The dynamic procedure can be used to determine a*
as described in Kirn & Menon (1995b). The SGS
stress tensor TV,- is parameterized according to the
eddy viscosity assumption and the SGS eddy viscos-
ity VT is modeled as: VT = Crklgt A where Cr is an
adjustable coefficient that is determined dynamically,
as shown below. Equation (3) is closed by provid-
ing a model for the dissipation rate term, e. Using
simple scaling arguments, e is usually modeled as:
e = Cc A~ kf$ where, Ce is another coefficient that
is also obtained dynamically.

To obtain the coefficients Cr and Cc dynamically,
a top-hat test filter characterized by A (typically,
A = 2A) is used (the application of the test filter on
any variable (j> will be denoted by <£). The dynamic
modeling procedure employed in the present study is
based on the existence of the similarity between the
SGS stress ry = u&J — «<«,• and the following re-
solved stress Ttj = ufuj — Sjttf which was observed
in Liu et aL'a (1994) analysis of experimental data
in the far field of a round jet at a reasonably high
Reynolds number (Re\ « 310). Using the existence
of the similarity, the model for Ty can be extended to
T^ as follows,

^ (4)

Also, the dissipation rate at the test filter level can
be modeled in a similar manner:

E = (5)

'** **ST**- "i - UjtiiJ

Here, (y + VT) is used for E since E is described only
by the resolved-range scales, while the definition of



the actual dissipation g includes the unresolved scale
information (dui/dxj)2. That is, the test filter level

/ —-~—. *** .x-fc \
energy, K = ^ (u<«i — u^k \, is dissipated due to the
SGS eddy viscosity as well as the molecular viscosity.
Therefore, the effective viscosity for E is (y 4- VT).
Now, Cr and Ce can be determined directly from (4)
and (5). Equation (4) is a set of five independent
equations for one unknown CT- To minimize the error
that can occur solving this over-determined system,
Lilly (1992) proposed a least-square method which
yields

where

^ _
= -A uitli -

1/2

(6)

(7)

Equation (5) is a scalar equation for a single unknown
and, hence, an exact value Ce can be obtained with-
out applying any approximation:

Cf = A - luiu, -W)]
-3/2

E (8)

As shown above, a mathematically consistent pro-
cedure is employed in this dynamic formulation (Ger-
mano et oi's dynamic model formulation contains a
mathematical inconsistency since the model coeffi-
cient is taken out of the spatial-filtering operation in
spite of its large spatial variation). Furthermore, the
denominators of the expressions for CT and Ce con-
tain the energy information within the resolved scale
range which is well-defined (in Germano et aL's dy-
namic model, the denominator in the final equation
for the model coefficient contains algebraically manip-
ulated terms that can be very small causing numerical
instability and hence, the resulting expressions are ill-
conditioned). Therefore, the ill-conditioning problem
is not considered serious here. Also, the direct eval-
uation of the SGS kinetic energy prevents the pro-
longed occurrence of negative model coefficient which
has been known to cause numerical instability in Ger-
mano et aL's dynamic model. These properties of the
current model enable a stable localized evaluation of
the model coefficients without employing any spatial
or temporal averaging. Further, note that, the ex-
pression for Ce does not have the unphysical property
of vanishing at high Reynolds numbers since the effec-
tive viscosity (y -f VT) is used instead of just v. Kim
and Menon (1995b) showed that the LDKSGS model
is properly Galilean-invariant and, therefore, the re-
sulting LES equations of motion for the large eddies
using the LDKSGS model retain the same form in all

inertial frames of reference. They also proved that
the model satisfies the realizability conditions given
by the inequalities T« > 0 and T?- < THTJJ (Vreman
et al., 1994a). These ineqaulities provide the follow-
ing realizable range for the dynamically determined
model coefficient CT,

L.V2
l**tt* (9)

(10)

where Su and Snn denote, respectively, the largest
and smallest eigenvalues of the strain rate tensor (i.e.,
~Su > 0 and ~Snn < 0 in the incompressible case). Nu-
merical experiments using decaying isofcropic turbu-
lence (the detailed description of this flow field will
be presented in the section 3.1) show that more than
99.9% (for the 483 grid resolution), 99.8% (for the 32s

grid resolution), and 99.6% (for the 243 grid resolu-
tion) of the grid points satisfy both the realizability
conditions, (9) and (10), at the same time during the
entire simulation. Therefore, the LDKSGS model sat-
isfies the realizability conditions hi a more strict sense
when compared to Ghosal et al (1995) who reported
that the DLM(£) model (which is the only other ex-
isting localized dynamic model formulated without
employing the ad hoc averaging procedure) satisfies
the realizability condition at about 95% of the grid
pouits for the simulation of decaying isotropic tur-
bulence using a 483 grid resolution. Furthermore, to
examine the realizability, they used only the condi-
tion (9). According to our numerical experiments,
the satisfaction of the condition (9) does not auto-
matically guarantee the satisfaction of the condition
(10). For definite realizability, both conditions, (9)
and (10), should be used for accurate verification.

3 RESULTS AND DISCUSSION
The LDKSGS model has been applied to decaying
(section 3.1) and forced (section 3.2) isotropic turbu-
lence, and turbulent mixing layer (section 3.3).

3.1 DECAYING ISOTROPIC TURBULENCE
The experiment of decaying isotropic turbulence
of Comte-Bellot and Corsin (1971) is simulated to
demonstrate the capability of the LDKSGS model in
predicting the decay of the turbulent energy. First,
the grid resolutions for possible DNS and LES are in-
vestigated by computing the resolved energy at each
grid resolution (i.e., by numerically integrating the



spectrum given by Comte-Bellot fe Corsin(1971) be-
tween wavenumbers zero to the maximum wavenum-
ber resolved by the grid resolution). The results show
that 3843, 1923, 963, 483, 323 and 243 grid resolu-
tions resolve 99.5%, 96.6%, 87.3%, 70.3%, 59.3% and
49.7% of the total turbulent kinetic energy, respec-
tively. Therefore, to accurately resolve all excited
turbulence scales without employing any turbulence
models, at least 3843 grid resolution is needed. Also,
for LBS, the grid resolution used must be consistent
with the basic assumption of LES that the resolved
scales contains most of the energy. For this same
problem, Ghosal et al. (1995) concluded that the 483

grid resolution is the smallest possible resolution for
LF.S since, at the grid resolution coarser than 483, a
significant number of energy-containing eddies resides
in the unresolved scales and, hence, the results are
greatly dependent on the quality of the SGS model
employed. That is, the simulation of this experiment
especially using the grid resolution coarser than 483

(i.e., when the subgrid scales contain more than 30%
of total turbulent kinetic energy) is a good test case
to measure the quality of the SGS model. For this
purpose, three grid resolutions (483, 32s, and 243)
are used for the large-eddy simulations implemented
here.

In the experiment, measurements of the energy
spectra were carried out at three locations down-
stream of the mesh (which generated the turbulence
in the wind tunnel). At the first measuring sta-
tion, the Reynolds number based on the Taylor mi-
croscale and based on the integral scale were, re-
spectively, 71.6 and 187.9 (these values decreased to
60.7 and 135.7, respectively, at the last measuring
station). Using the assumption of a constant mean
velocity across the cross section of the wind tunnel,
the elapsed tune for the turbulent field traveling at
the mean velocity from the mesh (that is, propor-
tional to the downstream distance) can be obtained.
Therefore, this (spatially evolving) problem can be
thought of as a decaying isotropic turbulence inside
a cubical box which is moving with the mean flow
velocity. The size of the box is chosen to be greater
than the integral scale of the measured real turbu-
lence. The statistical properties of turbulence inside
the box are believed to be realistic even after apply-
ing periodic boundary condition for numerical imple-
mentation. All experimental data is nondimension-
alized by the reference length scale 10Af/2ir (where
M = 5.08cm is the wind-tunnel mesh spacing) and
the reference time scale 0.1 sec for computational con-
venience. (By this nondimensionalization, the three
measuring locations correspond to the three dimen-
sionless time levels, t' =2.13, 4.98 and 8.69, respec-

tively.)
The initial velocity field (primarily the amplitudes

of the velocity Fourier modes) is chosen to match the
three-dimensional energy spectrum obtained at the
first experimental measuring station. The phases of
Fourier modes are chosen to be random so that the
initial velocity field satisfy Gaussian statistics. The
initial pressure is assumed to be uniform throughout
the flow field and the initial SGS kinetic energy is es-
timated by assuming the similarity between the SGS
kinetic energy and the resolved energy at the test fil-
ter level: ksgl « %£• [UiUi —ikuij where a constant
CK is determined by matching the magnitude of the
SGS kinetic energy to the exact SGS kinetic energy
calculated by integrating the experimental spectrum
at the first measuring station. In situations where the
information about the magnitude of the exact SGS
kinetic energy is not known, a value of CK can be
determined by adopting the similarity concept used
hi the dynamic procedure. This formulation is pre-
sented in Kim & Menon (1995b).

Figure 1 shows the decay of the resolved turbulent
kinetic energy computed using the LDKSGS model at
three grid resolutions, 483, 323, and 243. The results
are compared with the predictions of the volume-
averaged Germane et o/.'s model at the 483 grid res-
olution and the experimental data of Comte-Bellot
and Corsin (1971). The predictions of both models
(at the 483 grid resolution) are in good agreement
with the experiment. As is well known, the turbu-
lent kinetic energy undergoes a power law decay, i.e.,
E ~ (<*)", in the asymptotic self-similar regime. The
experimental data roughly confirms the existence of
the power law by lying on a straight line on a log-
log plot. The decay exponent n is obtained from a
least-square fit to each data: -1.17 (483), -1.13 (323),
and -1.09(243) from the LDKSGS results and -1.20
(483), -1.16 (S23), and -1.12(243) from the experi-
mental data. These results confirm the agreement
between the predictions of LES and the experiment.
More importantly, the results of the LDKSGS model
at all three grid resolutions used (even for the 243 grid
resolution where about a half of the turbulent kinetic
energy is not resolved) show consistency in predict-
ing the energy decay. This property of the model is
a fascinating feature especially when the model is (to
be) applied to complex and high Reynolds number
flows where a significant amount of turbulent energy
possibly lies in the unresolved scales. Without a self-
consistent behavior, the SGS model can not simulate
high Reynolds number flows in complex geometries
reliably. Therefore, the proposed LDKSGS model
seems to have a promising potential for application



to complex, high-Reynolds number flows.
The computed and experimental three-dimensional

energy spectra resolved at the three different grid res-
olutions, 483, 323, and 243, are shown in figures 2(a)
at t* = 4.98 and (b) at £* =.8.69. Both of the LD-
KSGS and volume-averaged Germane et aPs mod-
els predict the spectra reasonably well. Especially,
the LDKSGS model predicts the spectra consistently
well for all three grid resolutions. Some discrepancy
between the experimental and LES-predicted energy
spectra is observed around the cut-off wavenum-
ber. This discrepancy is due to the fact that, for
its discretized numerical implementation, the finite-
difference code used in this study implicitly adopts
the top-hat filter which yields a significant contri-
bution to the subgrid-scale energy from the lower
wavenumbers than the cut-off wavenumber (when the
Fourier cut-off filter is employed, the subgrid-scale en-
ergy is entirely due to the energy in the wave numbers
larger than the cut-off wavenumber). Direct compar-
ison between experimental and LES-predicted energy
spectra is meaningful only when the full-resolution
experimental flow field is filtered down to the LES
grid resolution to compare using the top-hat filter (to
be more consistent, the initial flow field for LES also
should be obtained from the experimental flow field
using the top-hat filter).

3.2 FORCED ISOTROPIC TURBULENCE
A statistically stationary isotropic turbulence is simu-
lated using a 32s grid resolution. The main purpose of
this simulation is to determine whether a low resolu-
tion LES using the LDKSGS model can reproduce the
statistics (of the large scale structures) in a realistic,
high Reynolds number turbulent field. The results
are compared with the existing high resolution DNS
data by Vincent and Meneguizzi (1991) and Jimenez
et al. (1993) obtained at Re\ « 150 and Re* « 170,
respectively.

A statistically stationary turbulent field is obtained
by forcing the large scales (i.e., the initial value of all
Fourier modes with wave number components equal
to 1 is kept fixed). The initial condition is obtained by
generating a random realization of the energy spec-
trum (e.g., Briscolini and Santangelo, 1994),

E(k) =

where &o = 1 and C is a constant which normalizes
the initial total energy to be 0.5. In this study, LES
are implemented under two different flow conditions.
One is characterized by Taylor microscale Reynolds
number Re* « 260, the integral scale Reynolds num-
ber Ret « 2400, and the large-eddy turnover time

T fa 3.7; the other is characterized by Re\ « 80,
Ret « 220, and r « 4 (here, those values are es-
timated in an approximate manner as described in
Kim & Menon, 1995b). The simulations have been
run for 27 and 25 large-eddy turnover times, respec-
tively. To ensure statistical independence, 20 fields
are used in statistical analysis for both cases (i.e., the
time interval between successive fields is larger than
(or at least same as) one large-eddy turnover tune).

The temporal evolution of the mean turbulent ki-
netic energy is investigated (not shown here). After
an initial decaying period, the mean turbulent kinetic
energy remains at almost the same level, reflecting a
balance between forcing at the large scales (the en-
ergy injection rate) and dissipation at the small scales
(the energy dissipation rate). Only this energy equi-
librium period of time is used in statistical analysis
because it is closer to a statistically steady state.

Figure 3(a) shows the probability distribution of
velocity differences, 5tt(r) = u(x+r) — u(x), for vari-
ous values of r (note that all values of r used here are
comparable with the inertial range scales). For gen-
erality, Su is normalized so that a2 = (&*2} — 1- The
LES results (using the LDKSGS model at Re* « 260)
clearly show that the distribution changes from a non-
Gaussian (which has the wings) to a Gaussian, as r
increases. The same behavior of the distribution was
observed in the high resolution DNS of Vincent and
Meneguizzi (1991). In addition to the basic agree-
ment regarding the development of the non-Gaussian
statistics, the LES accurately predicts the probabil-
ity for each bin. Figure 3(b) shows an agreement
between the distributions for r = 0.39 obtained from
the LES and the DNS except for some deviation in
the wing region. However, as is well known, the wings
of the non-Gaussian distribution develop mainly due
to small-scale fluctuations. Therefore, the deviation
between the LES and the DNS results in the wings
is somewhat natural; since in LES, most small scales
are not resolved and even the resolved portion of small
scales lies under strong influence of the top-hat filter
implicitly implemented in the finite-difference code.

The statistics of velocity and its derivatives are also
investigated. While the statistics of velocity are the
property of the large scales which are mostly resolved
in LES, the statistics of velocity derivative are the
property of the dissipation range scales which are not
resolved by LES. Therefore, the direct comparison of
LES and DNS using the statistics of velocity deriva-
tive may be meaningless. A more useful comparison
can be achieved by filtering the DNS field downtoihe
same resolution as the LES. For the same grid reso-
lution and flow conditions, the statistics of the LES
and the filtered DNS should match well. However,



the velocity derivative statistics of the filtered DNS
data are not available, therefore, the DNS statistics
of velocity derivative obtained from the full resolu-
tion simulation (shown in the table I) is being used
only as a qualitative measure for the LES results. We
computed the nth-order moments of the velocity and
its derivative distributions using

(12)

here, {•) denotes ensemble-averaging. The results of
this calculation is summarized in table 1. The re-
sults of the 5123 DNS (Rex « 170), the 2403 DNS
(Rex w 150), and the 643 LES (Rex « 140) are
obtained from Jimenez et aL (1993), Vincent and
Meneguizzi (1991), and Briscolini and Santangelo
(1994), respectively. (Note that different authors use
a definition of Rex in different form, however, we use
the original value provided by the authors without
any correction.) The 64s LES was implemented using
the Kraichnan's eddy viscosity where the small scales
are parameterized reproducing a self-similar range of
energy in spectral space. We simulated two different
Reynolds number cases using the same grid resolu-
tion to investigate the effect of the Reynolds number
on the statistics. As shown in the table, the veloc-
ity statistics appear not to depend on either the grid
resolution or the Reynolds number simulated. How-
ever, the velocity derivative statistics were highly in-
fluenced by the grid resolution employed (it can be
observed from the table that those values of the ve-
locity derivative statistics are consistently decreased
as the grid resolution becomes coarse from 5123 to
323). In the LES, the effect of the Reynolds num-
ber on the velocity derivative statistics is not cap-
tured (in the DNS of Jimenez et aL, 1993, consis-
tent increase in the velocity derivative statistics with
Reynolds number increase was observed), since the
velocity derivative statistics are strongly determined
by the grid resolution employed.

Figures 4(a) and (b) show the temporal evolution of
the model coefficient CT and the dissipation model co-
efficient Ce (locally evaluated coefficients are volume-
averaged for quantitative presentation). The LD-
KSGS model predicts Cr « 0.056 and Ce « 0.33
for higher Reynolds number case (Rex « 260) and
CT « 0.05 and Ce « 0.44 for lower Reynolds num-
ber case (Rex « 80). These values for Cr are well
matched with that suggested by Yoshizawa & Horiuti
(1985); they recommended Cr « 0.05 from the frame-
work of the two-scale direct-interaction approxima-
tion (TSDIA). (Note that, in the Reynolds-averaged
turbulence models, a generally adopted value for CT
is about 0.09; that is significantly larger than that for

LES.) However, there are some discrepancies between
Ce values dynamically determined and suggested by
Yoshizawa & Horiuti (Ce «1). Irom the observation
of these figures, it can be roughly concluded that in
LES of (forced) isotropic turbulence using the fixed
grid resolution, a larger value of the model coefficient
CT and a smaller value of the dissipation model coeffi-
cient Ce is required as higher Reynolds number flows
are simulated.

3.3 TURBULENT MIXING LAYER
Although it is generally accepted that turbulent mix-
ing layers achieve self-similarity after initial develop-
ment, there is still a lack of agreement (between dif-
ferent simulations or experiments) on the asymptotic
growth rate and the turbulence properties in the self-
similar period. The discrepancy becomes more severe
hi the numerical simulations (both DNS and LES) of
temporally evolving turbulent mixing layers since the
evolution of the flows is very sensitive to the initial
state not only in the physical aspect but also in the
numerical aspect. That is, the evolution of the flows
varies greatly in simulations using different numerical
schemes, grid resolutions and turbulent models, even
though extremely accurate schemes and models are
employed. Especially, since in LES, the SGS models
are devised to predict the effect of the subgrid-scale
turbulence on the large-scale turbulence, they are not
capable of properly handling the artificial (somewhat
unrealistic) turbulence prescribed in the initial field.
Hence, the initial disturbance fields at different grid
resolutions even obtained in a physically and a numer-
ically consistent manner (such as by taking successive
filtering to a full-resolution field) are recognized by
the SGS model as being different initial states. This
implies that the LES would fail to provide results
which can be directly compared to the DNS data or
the LES results at different resolutions. The only
meaningful comparison of time accurate results can
be achieved by a scaling using parameters which can
remove the initial condition effects. This issue is ad-
dressed below.

Generally, turbulent mixing layers are considered
self-similarly evolving if they grow linearly and the
shapes of the mean velocity and turbulence pro-
files are independent of time (or location in spatially
evolving mixing layers) when scaled by the tune-
dependent (or local in spatially evolving mixing lay-
ers) momentum thickness Sm and the velocity dif-
ference AC7. Itieniporally evolving mixing layers,
the growth rate is generally scaled by the initial mo-
mentum thickness 6^ and the velocity difference A£7.
This scaling is typically adopted only for the pur-
pose of nondimensionalization, hence, time-accurate



evolution can be obscured by the effects of the ini-
tial conditions. To extract time-accurate information,
the principal effects of initial development variability
should be removed. This can be achieved by choos-
ing appropriate scaling parameters in the self-similar
period and using a reasonable reference point at the
instant when self-similar evolution starts (i.e., when
the mixing layer begins to grow linearly). However,
both physically and numerically, it is difficult to pre-
cisely estimate this starting point of self-similarity. In
the present study, this point is estimated by numer-
ical investigation. First, the points where the first,
second, and third derivatives of momentum thickness
evolution curve have extreme (maximum and min-
imum) values, are sought. And then, these points
are used as reference points for the momentum thick-
ness growth rate scaling. It is found that the point
where the second derivative of momentum thickness
evolution curve has a maximum value, provides the
most reliable time-accurate results. The present scal-
ing can be described as follows,

5-t5) (14)
"m

where superscript * denotes scaled variables and su-
perscript S indicates the scaling parameters at the
self-similarity starting point. Subtractions by S^
and fs are implemented to assign zero scaled tune
and scaled momentum thickness at the self-similarity
starting point. This scaling is applied to both DNS
and LES data of temporally evolving mixing layers
and its capability in generating tune-accurate results
is demonstrated below.

Vreman et aL (1994b) simulated the temporal,
weakly compressible (M=0.2) mixing layer in a cu-
bic domain using 1923 grid resolution. In their study,
the length of the domain is 29.55° (where 5° denotes
the initial vorticity thickness) which is correspond-
ing to four times the wavelength of the most unsta-
ble mode as predicted by linear stability theory at
M=0.2. Periodic boundary conditions are imposed hi
the streamwise (x) and spanwise (z) directions, while
in the cross-stream (y) direction the boundaries are
assumed as slip walls. The initial velocity field is
the hyperbolic-tangent profile, u = At/tanh(2y/5^),
on which is superimposed a three-dimensional large-
amplitude eigenfunction disturbance obtained from
linear stability analysis (Sandham & Reynolds, 1991).
For the present study cf the iemporalrjrevolving in-
compressible mixing layer, the initial LES field is ob-
tained by filtering the initial DNS field (generated us-
ing Vreman's code) for three different lengths of the

domain, 28.35® (which corresponds to four tunes the
wavelength of the most unstable mode as predicted
by linear stability theory at M=sO), 505°,, and 100 .̂
Table 2 summarizes the test condition and the initial
and self-similar starting point Reynolds number.

Figure 5(a) shows the evolution of the unsealed mo-
mentum thickness as a function of the unsealed time.
According to the plot, all four simulations seem to
evolve differently, hence, the direct comparison of the
flow properties at the same (unsealed) time results
poor agreement (not shown here). The scaling de-
scribed in (13) and (14) is applied to these data and
the results are plotted in figure 5(b). Now, curves
for all three LES runs agree very well each other (the
LDKSGS model seems to work consistently well for
the relatively coarser, same resolutions but larger do-
main sizes, grids) but overpredict the growth rate
over the DNS curve slightly. This difference between
LES and DNS confirms the well-known feet that com-
pressibility reduces mixing layer growth rate (Sand-
ham & Reynolds, 1991). Figure 5(b) also includes
the asymptotic growth rate (slope) obtained from the
experiment of Bell and Mehta (1990) for a spatially
evolving mixing layer begun from turbulent (tripped)
splitter-plate boundary layers. The growth rates pre-
dicted by LES runs agree very well with the experi-
ment.

The mean velocity profiles of the LES Run 2 at five
tunes during the entire period after t* = 0 are plot-
ted with self-similar scaling using the tune-dependent
momentum thickness 6m and the velocity difference
AJ7 hi figure 6. Also included are the experimental
data of Bell and Mehta (1990) (the experimental pro-
files have been shifted to center them at y = 0). The
collapse of the data at the five times is excellent, and
the mean profile agrees very well with the data of Bell
and Mehta.

Figure 7 shows the Reynolds stress profile uu scaled
using self-similar parameters at t* — 110. The over-
all agreement between the DNS and the LES runs
is quite good. Interestingly, the LES Runs 2 and 3
agree much better with the DNS than the LES Run
1, although their computational domain lengths com-
puted using initial parameters agree less with that of
DNS (see table 2). The poorer results of the LES
Run 1 may stem from the fact that the computa-
tional domain of the LES Run 1 is not large enough
to encompass the same structures resolved in the
DNS at the chosen instant, even though both sim-
ulations start with the initially identical computa-
tional domain sizes. Therefore, from the above re-
sults, it can be concluded that the simulation param-
eters scaled by the self-similarity stating point param-
eters are more useful than those scaled by the initial



parameters especially for comparing time-accurate
DNS/LES results.

Figures 8 (a) and (b) show the evolution (with re-
spect to the scaled time) of the model coefficient CT
and the dissipation model coefficient Cc computed
from the LES Run 2. Averaging over the two homo-
geneous directions renders the coefficients as a func-
tion of tune and the normal direction y. Five loca-
tions are chosen between the center plane (y = 06^)
and the lower boundary plane (y = —22.98^). The
volume-averaged coefficients are also included. At
t* = 0, both coefficients (especially, Ce) computed on
the center plane (y = 0) increase rapidly indicating
that turbulence starts to decay by the viscous damp-
ing and realistic turbulence is about to develop. This
fact confirms that the self-similarity starting point is
accurately determined. The Ce values computed on
the planes other than the center plane (y = 0) are un-
physically large during the initial period since the ini-
tial disturbances are applied to very thin layer around
the center plane, however, these values rapidly de-
crease as the mixing layer grows.

4 CONCLUSIONS
In this paper, the LDKSGS model has been success-
fully applied to LES of high Reynolds number flows
such as decaying and forced isotropic turbulence, and
temporally evolving turbulent mixing layer. The ca-
pability of the LDKSGS model in predicting the en-
ergy decay rate has been demonstrated by simulating
decaying isotropic turbulence and comparing the re-
sults to the experimental data (the LES results con-
firmed the power law decay which was observed in the
experimental data). Furthermore, three different res-
olutions LES (at the coarsest resolution, about a half
of the kinetic energy was not resolved) showed consis-
tency in predicting the energy decay. This property
of the LDKSGS model is very attractive, especially
when the model is (to be) applied to complex and high
Reynolds number flows where a significant amount of
turbulent energy possibly lies in the unresolved scales.
The application of the present model to forced (sta-
tistically stationary) isotropic turbulence also proves
the capability of the LDKSGS model in reproducing
the statistics (of the large scale structures) of a realis-
tic, high Reynolds number turbulent field. The LES
results, when compared to the high resolution DNS
data, clearly show the accurate prediction of velocity
statistics and the development of the non-Gaussian
statistics (which was observed in the high resolution
DNS). The capability of the LDKSGS model in pre-
dicting the time-accurate results has been further in-
vestigated by simulating the temporally-evolving tur-

bulent mixing layer which is dominated by coherent
structures and evolves from the linear stability regime
up to a well developed turbulent flow field. Using the
scaling which is capable of separating the distinct ef-
fects of initial development on the self-similar stage of
the mixing layer evolution, it was demonstrated that
the coarse grid simulations employing the LDKSGS
model can provide tune-accurate results which agree
very well with existing direct numerical simulation
and experimental data.
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5123 DNS
(Rex«170)
240PDNS

(Rex=150)
643LES

(Rex«140)
323LES

(Rex =260)
323LES

(Rex -80)
Gaussian

U
s<

2.80

2.78

2.80

3.0

s.
12.5

11.9

12.1

15.0

du/dx O«/dy)
S3

-0.525

-0.5
(-0.04)
-0.35
(0.06)
-0.32

(-0.01)
-0.30
(0.03)
0.0

s<
6.1
(9.4)
5.9

(8.0)

(4.5)
3.47

(4.87)
3.59

(4.93)
3.0

ss
-12.0

-9

-3.48
(-0-11)
-3.57
(0.23)
0.0

S6
125

(370)
90

23.4
(49.9)
25.8

(51.3)
15.0

Table 1. Higher-order moments for u-velodty and its
gradients. The 5123 DNS, 2403 DNS, and 643

LES results are obtained from Jimenez et al.
(1993), Vincent & Meneguizzi (1991), and
Briscolini & Santangelo (1994), respectively.

1923 DNS

LES Run 1

LES Run 2

LES Run 3

Domain size

55.98*
(29.58°)
39.58*

(28.38°)
45.78*
(508°)
49.88*
(1008°)

A£/8*
V

106

143

219

402

A&8°
V
79

78

113

201

AP5°,
V

200

200

200

200

Table 2. Temporally evolving mixing layer simulation
parameters. The 1923 DNS results is obtained
from Vreman et al. (1994b).
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Figure 1. Decay of turbulent kinetic energy resolved in
LES; compared to the experimental data by
Comte-Bellot & Corsin (1971).
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Figure 2(a). Energy spectra predicted by LES at
t' =4.98; compared to the experimental data by
Comte-Bellot & Corsin (1971).
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Figure 2(b). Energy spectra predicted by LES at
t* =8.69; compared to the experimental data by
Comte-Bellot & Corsin (1971).
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Figure 3(a). Probability distribution of normalized
velocity difference for five different scales (r)
predicted by 323 LES at Re*. = 260.
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Figure 3(b). Probability distribution of normalized
velocity difference for r = 0.39; compared to the
DNS results by Vincent & Meneguizzi (1991).
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Figure 4(a). Time evolution of the model coefficients
determined from 323 LES at two different
Reynolds numbers.
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Figure 4(b). Time evolution of the dissipation model
coefficients determined from 325 LES at two
different Reynolds numbers.
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Rgure 5(a). Time evolution of the momentum
thickness in unsealed coordinates.
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Rgure 5(b). Time evolution of the momentum
thickness in scaled coordinates using self-
similarity starting parameters.
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Hgure 6. Mean streamwise velocity profiles in self-
similar scaled coordinates compared with the
experimental data of Bell and Mehta (1990).
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Rgure 7. Comparison of the time-accurate simulation
results in self-similar scaled coordinates for the
Reynolds stress component «v at f *=110.
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Rgure 8(a). Time evolution of the plane-averaged
model coefficients at five different locations along
the normal direction.

1.0

g0-8

3 0.6

§ 0.4

1
a 0.2

0.0

/ -OS*

-w 40 f 80
t"

120 160

Rgure 8(b). Time evolution of the plane-averaged
dissipation model coefficients at five different
locations along the normal direction.
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